Small Animal Imaging


Book Description

This textbook is a practical guide to the use of small animal imaging in preclinical research that will assist in the choice of imaging modality and contrast agent and in study design, experimental setup, and data evaluation. All established imaging modalities are discussed in detail, with the assistance of numerous informative illustrations. While the focus of the new edition remains on practical basics, it has been updated to encompass a variety of emerging imaging modalities, methods, and applications. Additional useful hints are also supplied on the installation of a small animal unit, study planning, animal handling, and cost-effective performance of small animal imaging. Cross-calibration methods and data postprocessing are considered in depth. This new edition of Small Animal Imaging will be an invaluable aid for researchers, students, and technicians involved in research into and applications of small animal imaging.




Molecular Imaging of Small Animals


Book Description

This book examines the fundamental concepts of multimodality small-animal molecular imaging technologies and their numerous applications in biomedical research. Driven primarily by the widespread availability of various small-animal models of human diseases replicating accurately biological and biochemical processes in vivo, this is a relatively new yet rapidly expanding field that has excellent potential to become a powerful tool in biomedical research and drug development. In addition to being a powerful clinical tool, a number of imaging modalities including but not limited to CT, MRI, SPECT and PET are also used in small laboratory animal research to visualize and track certain molecular processes associated with diseases such as cancer, heart disease and neurological disorders in living small animal models of disease. In vivo small-animal imaging is playing a pivotal role in the scientific research paradigm enabling to understand human molecular biology and pathophysiology using, for instance, genetically engineered mice with spontaneous diseases that closely mimic human diseases.




Molecular Imaging


Book Description

Radioisotope-based molecular imaging probes provide unprecedented insight into biochemistry and function involved in both normal and disease states of living systems, with unbiased in vivo measurement of regional radiotracer activities offering very high specificity and sensitivity. No other molecular imaging technology including functional magnetic resonance imaging (fMRI) can provide such high sensitivity and specificity at a tracer level. The applications of this technology can be very broad ranging from drug development, pharmacokinetics, clinical investigations, and finally to routine diagnostics in radiology. The design and the development of radiopharmaceuticals for molecular imaging studies using PET/MicroPET or SPECT/MicroSPECT are a unique challenge. This book is intended for a broad audience and written with the main purpose of educating the reader on various aspects including potential clinical utility, limitations of drug development, and regulatory compliance and approvals.




Molecular Imaging


Book Description

The field of molecular imaging of living subjects have evolved considerably and have seen spectacular advances in chemistry, engineering and biomedical applications. This textbook was designed to fill the need for an authoritative source for this multi-disciplinary field. We have been fortunate to recruit over 80 leading authors contributing 75 individual chapters. Given the multidisciplinary nature of the field, the book is broken into six different sections: "Molecular Imaging technologies", "Chemistry", "Molecular Imaging in Cell and Molecular Biology", "Applications of Molecular Imaging", "Molecular Imaging in Drug Evaluation" with the final section comprised of chapters on computation, bioinformatics and modeling. The organization of this large amount of information is logical and strives to avoid redundancies among chapters. It encourages the use of figures to illustrate concepts and to provide numerous molecular imaging examples.




Small-Animal SPECT Imaging


Book Description

Small-Animal SPECT Imaging is an edited work derived from the first workshop on Small-Animal SPECT Imaging held January 14-16, 2004 at the University of Arizona, Tucson, AZ, USA. The overall goal of the meeting and therefore this volume is to promote information exchange and collaboration between the research groups developing systems for small-animal applications. Topics include the biomedical significance of small-animal imaging, an overview of detector technologies including scintillation cameras and semi-conductor arrays, imager design and data acquisition systems, animal handling and anesthesia issues, objective assessment of image quality, and system modeling and reconstruction algorithms.




PET Chemistry


Book Description

Personalized medicine employing patient-based tailor-made therapeutic drugs is taking over treatment paradigms in a variety of ?elds in oncology and the central nervous system. The success of such therapies is mainly dependent on ef?cacious therapeutic drugs and a selective imaging probe for identi?cation of potential responders as well as therapy monitoring for an early bene?t assessment. Molecular imaging (MI) is based on the selective and speci?c interaction of a molecular probe with a biological target which is visualized through nuclear, magnetic resonance, near infrared or other methods. Therefore it is the method of choice for patient selection and therapy monitoring as well as for speci?c e- point monitoring in modern drug development. PET (positron emitting tomography), a nuclear medical imaging modality, is ideally suited to produce three-dimensional images of various targets or processes. The rapidly increasing demand for highly selective probes for MI strongly pushes the development of new PET tracers and PET chemistry. ‘PET chemistry’ can be de?ned as the study of positron-emitting compounds regarding their synthesis, structure, composition, reactivity, nuclear properties and processes and their properties in natural and - natural environments. In practice PET chemistry is strongly in?uenced by the unique properties of the radioisotopes used (e. g. , half-life, che- cal reactivity, etc. ) and integrates scienti?c aspects of nuclear-, organic-, inorganic- and biochemistry.




Targeted Molecular Imaging


Book Description

Targeted Molecular Imaging covers the development of novel diagnostic approaches that use an imaging probe and agent to noninvasively visualize cellular processes in normal and disease states. It discusses the concept, development, preclinical studies, and, in many cases, translation to the clinic of targeted imaging agents. The many case studies t




Molecular Imaging I


Book Description

The aim of this textbook of molecular imaging is to provide an up to date review of this rapidly growing field and to discuss basic methodological aspects necessary for the interpretation of experimental and clinical results. Emphasis is placed on the interplay of imaging technology and probe development, since the physical properties of the imaging approach need to be closely linked with the biologic application of the probe (i.e. nanoparticles and microbubbles). Various chemical strategies are discussed and related to the biologic applications. Reporter-gene imaging is being addressed not only in experimental protocols, but also first clinical applications are discussed. Finally, strategies of imaging to characterize apoptosis and angiogenesis are described and discussed in the context of possible clinical translation.




Emission Tomography


Book Description

PET and SPECT are two of today's most important medical-imaging methods, providing images that reveal subtle information about physiological processes in humans and animals. Emission Tomography: The Fundamentals of PET and SPECT explains the physics and engineering principles of these important functional-imaging methods. The technology of emission tomography is covered in detail, including historical origins, scientific and mathematical foundations, imaging systems and their components, image reconstruction and analysis, simulation techniques, and clinical and laboratory applications. The book describes the state of the art of emission tomography, including all facets of conventional SPECT and PET, as well as contemporary topics such as iterative image reconstruction, small-animal imaging, and PET/CT systems. This book is intended as a textbook and reference resource for graduate students, researchers, medical physicists, biomedical engineers, and professional engineers and physicists in the medical-imaging industry. Thorough tutorials of fundamental and advanced topics are presented by dozens of the leading researchers in PET and SPECT. SPECT has long been a mainstay of clinical imaging, and PET is now one of the world's fastest growing medical imaging techniques, owing to its dramatic contributions to cancer imaging and other applications. Emission Tomography: The Fundamentals of PET and SPECT is an essential resource for understanding the technology of SPECT and PET, the most widely used forms of molecular imaging.*Contains thorough tutorial treatments, coupled with coverage of advanced topics*Three of the four holders of the prestigious Institute of Electrical and Electronics Engineers Medical Imaging Scientist Award are chapter contributors*Include color artwork




Handbook of In Vivo Chemistry in Mice


Book Description

Provides timely, comprehensive coverage of in vivo chemical reactions within live animals This handbook summarizes the interdisciplinary expertise of both chemists and biologists performing in vivo chemical reactions within live animals. By comparing and contrasting currently available chemical and biological techniques, it serves not just as a collection of the pioneering work done in animal-based studies, but also as a technical guide to help readers decide which tools are suitable and best for their experimental needs. The Handbook of In Vivo Chemistry in Mice: From Lab to Living System introduces readers to general information about live animal experiments and detection methods commonly used for these animal models. It focuses on chemistry-based techniques to develop selective in vivo targeting methodologies, as well as strategies for in vivo chemistry and drug release. Topics include: currently available mouse models; biocompatible fluorophores; radionuclides for radiodiagnosis/radiotherapy; live animal imaging techniques such as positron emission tomography (PET) imaging; magnetic resonance imaging (MRI); ultrasound imaging; hybrid imaging; biocompatible chemical reactions; ligand-directed nucleophilic substitution chemistry; biorthogonal prodrug release strategies; and various selective targeting strategies for live animals. -Completely covers current techniques of in vivo chemistry performed in live animals -Describes general information about commonly used live animal experiments and detection methods -Focuses on chemistry-based techniques to develop selective in vivo targeting methodologies, as well as strategies for in vivo chemistry and drug release -Places emphasis on material properties required for the development of appropriate compounds to be used for imaging and therapeutic purposes in preclinical applications Handbook of In Vivo Chemistry in Mice: From Lab to Living System will be of great interest to pharmaceutical chemists, life scientists, and organic chemists. It will also appeal to those working in the pharmaceutical and biotechnology industries.