Functional Molecular Materials


Book Description

The field of molecular materials represents an exciting playground for the design, tailoring, and combination of chemical building blocks as carriers of physical properties and aims at the understanding and development of novel functional molecular devices. Within this extraordinarily widespread framework, the realization of materials with the desired functionalities can only be achieved through a rational design strategy based on a solid understanding of the chemical and physical features of each constituting building block. This book provides a general overview of molecular materials, discussing their key features in a simple and organic way by focusing more on basic concepts rather than on specialized descriptions, in order to supply the non-expert reader with the immediate fundamental tools and hints to understand and develop research in this field. With this view, it is a step-by-step guide toward the preparation of functional molecular materials, where the knowledge and understanding so far attained by the scientific community through the investigation of significant archetypical examples is deconstructed down to the fundamental basis and then presented in reverse, from the base to the top.




Photophysics of Molecular Materials


Book Description

Carbon based pi-conjugated materials offer a broad range of applications, going from molecular electronics and single molecule devices to nanotechnology, plastic electronics and optoelectronics. The proper physical description of such materials is in between that of molecular solids and that of low-dimensional covalent semiconductors. This book is a comprehensive review of their elementary excitations processes and dynamics, which merges the two viewpoints, sometimes very different if not contrasting. In each chapter, a broad tutorial introduction provides a solid physical background to the topic, which is further discussed based on recent experimental results obtained via state-of-the-art techniques. Both the molecular, intra-chain character and the solid state, inter-molecular physics is addressed. Reports on single molecule and single polymer chain spectroscopy introduce the on-site phenomena. Several chapters are dedicated to nano-probes, steady state and transient spectroscopies. The highly ordered state, occurring in single crystals, is also discussed thoroughly. Finally, less conventional tools such as THz spectroscopy are discussed in detail. The book provides a useful introduction to the field for newcomers, and a valid reference for experienced researchers in the field.




Molecular Materials


Book Description

The field of molecular materials research looks at the preparation and characterization of potentially useful materials with enhanced physical, chemical, and biomedical properties. Molecular Materials: Preparation, Characterization, and Applications discusses the cutting-edge interdisciplinary research in the area of advanced molecular-based materials. This book explores multiple aspects of molecular materials, including their synthesis and characterization, and gives information on their application in various fields.




Functional Phthalocyanine Molecular Materials


Book Description

Phthalocyanines exhibit intriguing physic-chemical properties that render them important as a class of molecular functional materials. In addition to their traditional applications as dyes and pigments, more recently their use as the organic semiconductors, photodynamic therapy medicines, non-linear optical materials, catalysts for the photo oxidation, optical recording materials, and gas sensors attracts great research interests in these tetrapyrrole species.




Functional Molecular Materials


Book Description

The field of molecular materials represents an exciting playground for the design, tailoring, and combination of chemical building blocks as carriers of physical properties and aims at the understanding and development of novel functional molecular devices. Within this extraordinarily widespread framework, the realization of materials with the desired functionalities can only be achieved through a rational design strategy based on a solid understanding of the chemical and physical features of each constituting building block. This book provides a general overview of molecular materials, discussing their key features in a simple and organic way by focusing more on basic concepts rather than on specialized descriptions, in order to supply the non-expert reader with the immediate fundamental tools and hints to understand and develop research in this field. With this view, it is a step-by-step guide toward the preparation of functional molecular materials, where the knowledge and understanding so far attained by the scientific community through the investigation of significant archetypical examples is deconstructed down to the fundamental basis and then presented in reverse, from the base to the top.




Molecular Materials


Book Description

“... the book does an excellent job of putting together several different classes of materials. Many common points emerge, and the book may facilitate the development of hybrids in which the qualities of the “parents” are enhanced.” –Angew. Chem. Int. Ed. 2011 With applications in optoelectronics and photonics, quantum information processing, nanotechnology and data storage, molecular materials enrich our daily lives in countless ways. These materials have properties that depend on their exact structure, the degree of order in the way the molecules are aligned and their crystalline nature. Small, delicate changes in molecular structure can totally alter the properties of the material in bulk. There has been increasing emphasis on functional metal complexes that demonstrate a wide range of physical phenomena. Molecular Materials represents the diversity of the area, encapsulating magnetic, optical and electrical properties, with chapters on: Metal-Based Quadratic Nonlinear Optical Materials Physical Properties of Metallomesogens Molecular Magnetic Materials Molecular Inorganic Conductors and Superconductors Molecular Nanomagnets Structured to include a clear introduction, a discussion of the basic concepts and up-to-date coverage of key aspects, each chapter provides a detailed review which conveys the excitement of work in that field. Additional volumes in the Inorganic Materials Series: Low-Dimensional Solids | Molecular Materials | Porous Materials | Energy Materials




Multifunctional Molecular Materials


Book Description

This book provides a comprehensive overview on multifunctional molecular materials that involve coexistence or interplay or synergy between multiple physical properties focusing on electrical conductivity, magnetism, single-molecule magnets behavior, chirality, spin crossover, and luminescence. The book’s coverage ranges from transition metals and lanthanide coordination complexes to genuine organic materials. The book also discusses some potentialities of applications of these materials in molecule-based devices.




Magnetic Molecular Materials


Book Description

One of the major challenges of science in the last few years of the second millennium is learning how to design materials which can fulfill specific tasks. Ambitious as it may be, the possibilities of success are not ne~li~ble provided that all the different expertises merge to overcome the limits of eXIsting disciplines and forming new paradigms science. The NATO Advanced Research Workshop on "Magnetic Molecular Materials" was organized with the above considerations in mind in order to determine which are the most appropriate synthetic strategies, experimental techniques of investigation, and theoretical models which are needed in order to develop new classes of magnetic materials which are based on molecules rather than on metallic or ionic lattices. Why molecules? The answer may be obvious: molecular chemistry in principle fine can tune the structures and the properties of complex aggregates, and nature already provides a large number of molecular aggregates which can perform the most disparate functions. The contributions collected in this book provide a rather complete view of the current research accomplishments of magnetic molecular materials. There are several different synthetic approaches which are followed ranging from purely organic to inorganic materials. Some encouraging successes have already been achieved, even if the critical temperatures below which magnetic order is observed still are in the range requiring liquid helium.




Conducting and Magnetic Organometallic Molecular Materials


Book Description

For several years, the two parallel worlds of Molecular Conductors in one hand and Molecular Magnetism in the other have grown side by side, the former essentially based on radical organic molecules, the latter essentially based on the high spin properties of metal complexes. Over the last few years however, organometallic derivatives have started to play an increasingly important role in both worlds, and have in many ways contributed to open several passages between these two worlds. This volume recognizes this important emerging evolution of both research areas. It is not intended to give a comprehensive view of all possible organometallic materials, and polymers for example were not considered here. Rather we present a selection of the most recent research topics where organometallic derivatives were shown to play a crucial role in the setting of conducting and/or magnetic properties in crystalline materials. First, the role of organometallic anions in tet- thiafulvalenium-based molecular conductors is highlighted by Schlueter, while Kubo and Kato describe very recent ortho-metalated chelating ligands appended to the TTF core and their conducting salts. The combination of conducting and magnetic properties and the search for p–d interactions are analyzed in two comp- mentary contributions by Myazaki and Ouahab, while Valade focuses on the only class of metal bis(dithiolene) complexes to give rise to superconductive molecular materials, in association with organic as well as organometallic cations.




Multifunctional Conducting Molecular Materials


Book Description

The use of conducting molecular materials is a rapidly developing, multidisciplinary field of research, offering a wide variety of possibilities for the future. It is of particular relevance to nano fabrication and technology because it offers high density, small size integrated and multifunctional properties that can be fabricated under mild conditions. Multifunctional Conducting Molecular Materials covers a wide range of topics including: molecular conductors and superconductors; design and synthesis of functional molecular materials; organic/inorganic hybrids and photoinduced phenomena; fullerenes, nanotubes and other related nano materials. The book concludes with a look at integration and functionalities of molecular materials such as organic field effect transistors (OFET). This high level book is ideal for researchers in both industry and academia who are interested in this new and exciting field.