Handbook of Brain Microcircuits


Book Description

In order to focus on principles, each chapter in this work is brief, organized around 1-3 wiring diagrams of the key circuits, with several pages of text that distil the functional significance of each microcircuit




C. Elegans II


Book Description

Defines the current status of research in the genetics, anatomy, and development of the nematode C. elegans, providing a detailed molecular explanation of how development is regulated and how the nervous system specifies varied aspects of behavior. Contains sections on the genome, development, neural networks and behavior, and life history and evolution. Appendices offer genetic nomenclature, a list of laboratory strain and allele designations, skeleton genetic maps, a list of characterized genes, a table of neurotransmitter assignments for specific neurons, and information on codon usage. Includes bandw photos. For researchers in worm studies, as well as the wider community of researchers in cell and molecular biology. Annotation copyrighted by Book News, Inc., Portland, OR




The Neurobiology of Olfaction


Book Description

Comprehensive Overview of Advances in OlfactionThe common belief is that human smell perception is much reduced compared with other mammals, so that whatever abilities are uncovered and investigated in animal research would have little significance for humans. However, new evidence from a variety of sources indicates this traditional view is likely




Molecular Mechanisms of Neural Development and Insights into Disease


Book Description

Neural Development and Disease, Volume 142 in the Current Topics in Developmental Biology series highlights new advances in the field, with this new volume presenting interesting chapters by one or more members of an international board of authors. Sections in this new release cover The role of primary cilia in neural development and disease, Mechanisms of axon guidance receptor regulation and signaling, Synaptic recognition molecules in development and disease, The regulation of cortical neurogenesis, Axon guidance in the developing spinal cord, The role of astrocytes in synapse formation and maturation, Development of motor circuits, Molecular mechanisms that mediate dendrite morphogenesis, and more. - Provides the authority and expertise of leading contributors from an international board of authors - Presents the latest release in the Current Topics in Developmental Biology series




Mechanisms of Neural Circuit Formation


Book Description

Nothing provided




Patterning and Cell Type Specification in the Developing CNS and PNS


Book Description

The genetic, molecular, and cellular mechanisms of neural development are essential for understanding evolution and disorders of neural systems. Recent advances in genetic, molecular, and cell biological methods have generated a massive increase in new information, but there is a paucity of comprehensive and up-to-date syntheses, references, and historical perspectives on this important subject. The Comprehensive Developmental Neuroscience series is designed to fill this gap, offering the most thorough coverage of this field on the market today and addressing all aspects of how the nervous system and its components develop. Particular attention is paid to the effects of abnormal development and on new psychiatric/neurological treatments being developed based on our increased understanding of developmental mechanisms. Each volume in the series consists of review style articles that average 15-20pp and feature numerous illustrations and full references. Volume 1 offers 48 high level articles devoted mainly to patterning and cell type specification in the developing central and peripheral nervous systems. - Series offers 144 articles for 2904 full color pages addressing ways in which the nervous system and its components develop - Features leading experts in various subfields as Section Editors and article Authors - All articles peer reviewed by Section Editors to ensure accuracy, thoroughness, and scholarship - Volume 1 sections include coverage of mechanisms which: control regional specification, regulate proliferation of neuronal progenitors and control differentiation and survival of specific neuronal subtypes, and controlling development of non-neural cells




Genomic Regulatory Systems


Book Description

The interaction between biology and evolution has been the subject of great interest in recent years. Because evolution is such a highly debated topic, a biologically oriented discussion will appeal not only to scientists and biologists but also to the interested lay person. This topic will always be a subject of controversy and therefore any breaking information regarding it is of great interest.The author is a recognized expert in the field of developmental biology and has been instrumental in elucidating the relationship between biology and evolution. The study of evolution is of interest to many different kinds of people and Genomic Regulatory Systems: In Development and Evolution is written at a level that is very easy to read and understand even for the nonscientist.* Contents Include* Regulatory Hardwiring: A Brief Overview of the Genomic Control Apparatus and Its Causal Role in Development and Evolution * Inside the Cis-Regulatory Module: Control Logic and How the Regulatory Environment Is Transduced into Spatial Patterns of Gene Expression* Regulation of Direct Cell-Type Specification in Early Development* The Secret of the Bilaterians: Abstract Regulatory Design in Building Adult Body Parts* Changes That Make New Forms: Gene Regulatory Systems and the Evolution of Body Plans




Intercellular Communication in the Nervous System


Book Description

Intercellular communication is part of a complex system of communication that governs basic cellular activities and coordinates cell actions. The ability of cells to perceive and correctly respond to their environment is the basis of growth and development, tissue repair, and immunity as well as normal tissue homeostasis. Errors in cellular information processing are responsible for diseases such as cancer, autoimmunity, diabetes, and neurological and psychiatric disorders. There is substantial drug development concentrating on this and intercellular communication is the basis of much of neuropharmacology. By understanding cell signaling, diseases may be treated effectively and, theoretically, artificial tissues may be yielded. Neurotransmitters/receptors, synaptic structure and organization, gap junctions, neurotrophic factors and neuropeptides are all explored in this volume, as are the ways in which signaling controls neuroendocrinology, neuroimmunology and neuropharmacology. Intercellular Communication in the Nervous System provides a valuable desk reference for all scientists who consider signaling. - Chapters offer impressive scope with topics addressing neurotransmitters/receptors, synaptic structure and organization, neuropeptides, gap junctions, neuropharmacology and more - Richly illustrated in full color with over 200 figures - Contributors represent the most outstanding scholarship in the field, with each chapter providing fully vetted and reliable expert knowledge




Neural Plasticity and Memory


Book Description

A comprehensive, multidisciplinary review, Neural Plasticity and Memory: From Genes to Brain Imaging provides an in-depth, up-to-date analysis of the study of the neurobiology of memory. Leading specialists share their scientific experience in the field, covering a wide range of topics where molecular, genetic, behavioral, and brain imaging techniq




Neuropeptide Systems as Targets for Parasite and Pest Control


Book Description

The need to continually discover new agents for the control or treatment of invertebrate pests and pathogens is undeniable. Agriculture, both animal and plant, succeeds only to the extent that arthropod and helminth consumers, vectors and pathogens can be kept at bay. Humans and their companion animals are also plagued by invertebrate parasites. The deployment of chemical agents for these purposes inevitably elicits the selection of resistant populations of the targets of control, necessitating a regular introduction of new kinds of molecules. Experience in other areas of chemotherapy has shown that a thorough understanding of the biology of disease is an essential platform upon which to build a discovery program. Unfortunately, investment of research resources into understanding the basic physiology of invertebrates as a strategy to illuminate new molecular targets for pesticide and parasiticide discovery has been scarce, and the pace of introduction of new molecules for these indications has been slowed as a result. An exciting and so far unexploited area to explore in this regard is invertebrate neuropeptide physiology. This book was assembled to focus attention on this promising field by compiling a comprehensive review of recent research on neuropeptides in arthropods and helminths, with contributions from many of the leading laboratories working on these systems.