Molecular Pathogenesis and Signal Transduction by Helicobacter pylori


Book Description

This volume reviews the current state of research concerning bacterial virulence factors and the infection biology of Helicobacter pylori, which is the leading cause of peptic ulcers and gastric cancer worldwide. The chapters include cutting-edge findings on this fascinating microbe and discuss the general strategies of H. pylori infection and persistence, news on important H. pylori virulence factors, crosstalk with the microbiota, hot novel models and signaling mechanisms, risk factors of gastric disease and stomach cancer, and the impact of H. pylori infection on non-gastric diseases. Written by internationally respected scientists, this book will appeal to clinicians, researchers and advanced students alike.




Helicobacter Pylori


Book Description

Helicobacter pylori is an important human pathogen that infects up to 50% of the human population. As the leading cause of peptic ulcers, gastritis, and gastric cancer worldwide, the organism has been the subject of intensive research to unravel the mysteries of its genetics and cellular biology. In fact, the number of publications in this field has risen dramatically in recent years making it extremely difficult for even the most diligent reader to stay abreast of progress. This book distills the most important cutting-edge findings in the field to produce a timely and comprehensive review. With contributions from leading international helicobacter researchers, topics include: lipopolysaccharides, outer membrane proteins, motility and chemotaxis, type IV secretions systems, metal metabolism, molecular mechanisms of host adaptation, genomotyping, and proteonomics. As a useful introduction to the subject for new researchers and as an invaluable reference for the experienced researcher, this book is essential reading for all researchers working with Helicobacter and related organisms.




Microbiology of Waterborne Diseases


Book Description

The second edition of Microbiology of Waterborne Diseases describes the diseases associated with water, their causative agents and the ways in which they gain access to water systems. The book is divided into sections covering bacteria, protozoa, and viruses. Other sections detail methods for detecting and identifying waterborne microorganisms, and the ways in which they are removed from water, including chlorine, ozone, and ultraviolet disinfection. The second edition of this handbook has been updated with information on biofilms and antimicrobial resistance. The impact of global warming and climate change phenomena on waterborne illnesses are also discussed. This book serves as an indispensable reference for public health microbiologists, water utility scientists, research water pollution microbiologists environmental health officers, consultants in communicable disease control and microbial water pollution students. Focuses on the microorganisms of most significance to public health, including E. coli, cryptosporidium, and enterovirus Highlights the basic microbiology, clinical features, survival in the environment, and gives a risk assessment for each pathogen Contains new material on antimicrobial resistance and biofilms Covers drinking water and both marine and freshwater recreational bathing waters




Gastritis and Gastric Cancer


Book Description

This book is a comprehensive overview of invited contributions on Helicobacter pylori infection in gastritis and gastric carcinogenesis. The first part of the book covers topics related to the pathophysiology of gastric mucosal defense system and gastritis including the gastroprotective function of the mucus, the capsaicin-sensitive afferent nerves and the oxidative stress pathway involved in inflammation, apoptosis and autophagy in H. pylori related gastritis. The next chapters deal with molecular pathogenesis and treatment, which consider the role of neuroendocrine cells in gastric disease, DNA methylation in H. pylori infection, the role of antioxidants and phytotherapy in gastric disease. The final part presents the effects of cancer risk factors associated with H. pylori infection. These chapters discuss the serum pepsinogen test, K-ras mutations, cell kinetics, and H. pylori lipopolysaccharide, as well as the roles of several bacterial genes (cagA, cagT, vacA and dupA) as virulence factors in gastric cancer, and the gastrokine-1 protein in cancer progression.




Vascular Responses to Pathogens


Book Description

Vascular Responses to Pathogens focuses on the growing research from leaders in the field for both the short and long-term impact of pathogens on the vasculature. It discusses various organisms, including bacteria, parasites, and viruses, and their role in key events leading to vascular disease. Formatted to discuss the topic of the interaction of pathogens with the vascular rather than individual diseases described separately, this reference demonstrates that common mechanisms are at play in many different diseases because they have a similar context, their vasculature. This all-inclusive reference book is a must-have tool for researchers and practicing clinicians in the areas of vascular biology, microvasculature, cardiology, and infectious disease. - Covers a wide spectrum of organisms and provides analysis of pathogens and current therapeutic strategies in the context of their vasculature - Provides detailed perspectives on key components contributing to vascular pathogens from leaders in the field - Interfaces between both vascular biology and microbiology by encompassing information on how pathogens affect both macro and microvasculature - Includes coverage of the clinical aspects of sepsis and current therapeutic strategies and anti-sepsis drugs




Molecular Diagnostics in Cancer Patients


Book Description

This book aims to bring together a broad variety of examples of the role of pharmacogenomics in current drug development, uncovering dynamic concentration-dependent drug responses on biological systems to understand pharmacodynamics responses in human cancer where genetic lesions serve as tumor markers and provide a basis for cancer diagnosis. The book describes methods and protocols applied in molecular diagnostics. It offers pathologists and researchers providing molecular diagnostic services an array of the most recent and readily accessible reference to compare methods and techniques. Highlights include the molecular diagnosis of genetic aberrations by quantitative polymerase reaction (qPCR), sequence-specific oligonucleotide arrays, next-generation sequencing (NGS), CGH arrays-and methodologies directed at the detection of epigenetic events, high-throughput nucleic acid and protein arrays, direct sequencing and FISH-based methodologies, currently used in the diagnosis of solid tumors. The book also includes an innovative line of treatment in relation to the molecular prognosis, diagnosis and pharmacogenomics in the actual practice of clinical findings at molecular levels. The book covers the applications of numerous genetic testing methodologies; in approximately the chronological order of discovery and high-throughput diagnosis using advanced genomic approaches to identify such genes, in the search for novel drug targets and/or key determinants of drug reactions. It also promotes a wider understanding of molecular diagnostics among physicians, medical students, and scientists in academics, industry and corporate world.




Ending the War Metaphor


Book Description

Infectious diseases have existed longer than us, as long as us, or are relatively newer than us. It may be the case that a disease has existed for many, many years but has only recently begun affecting humans. At the turn of the century the number of deaths caused by infections in the United States had been falling steadily but since the '80s has seen an increase. In the past 30 years alone 37 new pathogens have been identified as human disease threats and 12% of known human pathogens have been classified as either emerging or remerging. Whatever the story, there is currently a "war" on infectious diseases. This war is simply the systematic search for the microbial "cause" of each disease, followed by the development of antimicrobial therapies. The "war" on infectious diseases, however, must be revisited in order to develop a more realistic and detailed picture of the dynamic interactions among and between host organisms and their diverse populations of microbes. Only a fraction of these microbes are pathogens. Thus, in order to explore the crafting of a new metaphor for host-microbe relationships, and to consider how such a new perspective might inform and prioritize biomedical research, the Forum on Microbial Threats of the Institute of Medicine (IOM) convened the workshop, Ending the War Metaphor: The Changing Agenda for Unraveling the Host-Microbe Relationship on March 16-17, 2005. Workshop participants examined knowledge and approaches to learning about the bacterial inhabitants of the human gut, the best known host-microbe system, as well as findings from studies of microbial communities associated with other mammals, fish, plants, soil, and insects. The perspective adopted by this workshop is one that recognizes the breadth and diversity of host-microbe relationships beyond those relative few that result in overt disease. Included in this summary are the reports and papers of individuals participating in the Forum as well as the views of the editors.




Molecular Biology and Pathogenicity of Mycoplasmas


Book Description

was the result of the efforts of Robert Cleverdon. The rapidly developing discipline of molecular biology and the rapidly expanding knowledge of the PPLO were brought together at this meeting. In addition to the PPLO specialists, the conference invited Julius Marmur to compare PPLO DNA to DNA of other organisms; David Garfinkel, who was one of the first to develop computer models of metabolism; Cyrus Levinthal to talk about coding; and Henry Quastler to discuss information theory constraints on very small cells. The conference was an announcement of the role of PPLO in the fundamental understanding of molecular biology. Looking back 40-some years to the Connecticut meeting, it was a rather bold enterprise. The meeting was international and inter-disciplinary and began a series of important collaborations with influences resonating down to the present. If I may be allowed a personal remark, it was where I first met Shmuel Razin, who has been a leading figure in the emerging mycoplasma research and a good friend. This present volume is in some ways the fulfillment of the promise of that early meeting. It is an example of the collaborative work of scientists in building an understanding of fundamental aspects of biology.




Bacterial Protein Toxins


Book Description

In recent years remarkable progress has been accomplished with respect to our knowledge about bacterial protein toxins. This refers especially to structural aspects of protein toxins but also holds true for genetics, molecular biology and biochemical mechanisms underlying the action of toxins. This volume covers the very current and exciting aspects of up-to-date bacterial toxicology and comprehensively reviews the most important bacterial protein toxins such as the intracellular acting toxins which exhibit enzyme activity, as well as those toxins that interact with cell plasma membranes by damaging the membranes (pore formation) or stimulating cell receptors (superantigens). This is the most current reference work on these important bacterial protein toxins, which are presented from the point of view of different disciplines such as pharmacology, microbiology, cell biology and protein chemistry.