Molecular Plant Immunity


Book Description

Molecular Plant Immunity provides an integrated look at both well-established and emerging concepts in plant disease resistance providing the most current information on this important vitally important topic within plant biology. Understanding the molecular basis of the plant immune system has implications on the development of new varieties of sustainable crops, understanding the challenges plant life will face in changing environments, as well as providing a window into immune function that could have translational appeal to human medicine. Molecular Plant Immunity opens with chapters reviewing how the first line of plant immune response is activated followed by chapters looking at the molecular mechanisms that allow fungi, bacteria, and oomycetes to circumvent those defenses. Plant resistance proteins, which provide the second line of plant immune defense, are then covered followed by chapters on the role of hormones in immunity and the mechanisms that modulate specific interaction between plants and viruses. The final chapters look at model plant-pathogen systems to review interaction between plants and fungal, bacterial, and viral pathogens. Written by a leading team of international experts, Molecular Plant Immunity will provide a needed resource to diverse research community investigated plant immunity.




Molecular Plant Immunity


Book Description

Molecular Plant Immunity provides an integrated look at both well-established and emerging concepts in plant disease resistance providing the most current information on this important vitally important topic within plant biology. Understanding the molecular basis of the plant immune system has implications on the development of new varieties of sustainable crops, understanding the challenges plant life will face in changing environments, as well as providing a window into immune function that could have translational appeal to human medicine. Molecular Plant Immunity opens with chapters reviewing how the first line of plant immune response is activated followed by chapters looking at the molecular mechanisms that allow fungi, bacteria, and oomycetes to circumvent those defenses. Plant resistance proteins, which provide the second line of plant immune defense, are then covered followed by chapters on the role of hormones in immunity and the mechanisms that modulate specific interaction between plants and viruses. The final chapters look at model plant-pathogen systems to review interaction between plants and fungal, bacterial, and viral pathogens. Written by a leading team of international experts, Molecular Plant Immunity will provide a needed resource to diverse research community investigated plant immunity.




Plant Innate Immunity Signals and Signaling Systems


Book Description

The volume III of the book presents the ways and means to manipulate the signals and signaling system to enhance the expression of plant innate immunity for crop disease management. It also describes bioengineering approaches to develop transgenic plants expressing enhanced disease resistance using plant immunity signaling genes. It also discusses recent commercial development of biotechnological products to manipulate plant innate immunity for crop disease management. Engineering durable nonspecific resistance to phytopathogens is one of the ultimate goals of plant breeding. However, most of the attempts to reach this goal fail as a result of rapid changes in pathogen populations and the sheer diversity of pathogen infection mechanisms. Recently several bioengineering and molecular manipulation technologies have been developed to activate the ‘sleeping’ plant innate immune system, which has potential to detect and suppress the development of a wide range of plant pathogens in economically important crop plants. Enhancing disease resistance through altered regulation of plant immunity signaling systems would be durable and publicly acceptable. Strategies for activation and improvement of plant immunity aim at enhancing host’s capability of recognizing invading pathogens, boosting the executive arsenal of plant immunity, and interfering with virulence strategies employed by microbial pathogens. Major advances in our understanding of the molecular basis of plant immunity and of microbial infection strategies have opened new ways for engineering durable resistance in crop plants.




Comprehensive and Molecular Phytopathology


Book Description

This book offers a collection of information on successive steps of molecular ‘dialogue’ between plants and pathogens. It additionally presents data that reflects intrinsic logic of plant-parasite interactions. New findings discussed include: host and non-host resistance, specific and nonspecific elicitors, elicitors and suppressors, and plant and animal immunity. This book enables the reader to understand how to promote or prevent disease development, and allows them to systematize their own ideas of plant-pathogen interactions. * Offers a more extensive scope of the problem as compared to other books in the market* Presents data to allow consideration of host-parasite relationships in dynamics and reveals interrelations between pathogenicity and resistance factors* Discusses beneficial plant-microbe interactions and practical aspects of molecular investigations of plant-parasite relationships* Compares historical study of common and specific features of plant immunity with animal immunity




An Introduction to Plant Immunity


Book Description

An Introduction to Plant Immunity is a comprehensive guide to plant immunology and stress response. The book covers the topic in 21 detailed chapters, starting from an introduction to the subject to the latest knowledge about plant disease resistance. The topics covered in the book include plant pathogens, plant diseases, plant immunity, passive defense mechanisms, acquired resistance, molecular genetics of plant immunology, protein function and genetic engineering. Each chapter provides a reader-friendly introduction along with clear sections detailing each topic. Additionally, detailed references for further reading are also provided. The combination of basic and advanced information on plant immunity make this book an essential textbook for students in botany and plant biology courses. Researchers interested in plant genomics and the effects of environmental and microbial interactions on plants will also benefit from this informative reference.




Switching on Plant Innate Immunity Signaling Systems


Book Description

This book presents the ways and means to switch on plant immune signaling systems using PAMP-PIMP-PRR signaling complex for crop disease management. It also describes bioengineering approaches to develop transgenic plants expressing enhanced disease resistance using genes encoding PAMPs, PRRs and transcription factors and genes involved in generation of PIMPs/HAMPs. It also discusses recent commercial development of PAMP products to switch on plant innate immunity for crop disease management. These unique approaches have been described with more than 100 figures and illustrations and these would make this book attractive for researchers and students to buy this book.




Plant Innate Immunity


Book Description

Plant innate immunity is a collective term to describe a complex of interconnected mechanisms that plants use to withstand potential pathogens and herbivores. The last decade has seen a rapid advance in our understanding of the induction, signal transduction and expression of resistance responses to oomycetes, fungi, bacteria, viruses, nematodes and insects. This volume aims at providing an overview of these processes and mechanisms.Edited by Jean-Claude Kader and Michel Delseny and supported by an international Editorial Board, Advances in Botanical Research publishes in-depth and up-to-date reviews on a wide range of topics in plant sciences. Multidisciplinary reviews written from a broad range of scientific perspectives For over 40 years, series has enjoyed a reputation for excellence Contributors internationally recognized authorities in their respective fields







Activation and Suppression of Plant Immunity


Book Description

Plants constantly face many kinds of abiotic and biotic stresses. One of the major threats is from many plant fungal, oomycete, viral, bacterial and nematode pathogens. Plant diseases caused by these pathogens reduce crop yield by 10-15% worldwide every year. Throughout the human history, plant diseases are responsible for many famines including the infamous Irish Potato Famine. Besides the negative impact on the yield, the quality of the infected crop will be adversely affected and the toxins produced by plant pathogens pose threat to human health. During the co-evolution between plants and pathogens, plants developed elegant defense system against pathogen infection and plant pathogens deploy a variety of strategies to suppress plant innate immunity. A deeper understanding the molecular mechanisms on the activation of plant defense in plants and suppression of plant defense by plant pathogens will be crucial to develop effective ways to minimize the detrimental effects from plant diseases on human beings. This Research Topic aims to increase our understanding on the molecular interactions between plants and pathogens.




Molecular Plant-Microbe Interactions


Book Description

This book, divided into 13 chapters, explores recent discoveries in the area of molecular plant-microbe interactions. It focuses mainly on the mechanisms controlling plant disease resistance and the cross talk among the signalling pathways involved, and the strategies used by fungi and viruses to suppress these defences. Two chapters deal with the role of symbionts (such as the symbiotic actinobacteria and vesicular arbuscular mycorrhizal fungi) during their interactions with plants.