Spectral, Photon Counting Computed Tomography


Book Description

Spectral, Photon Counting Computed Tomography is a comprehensive cover of the latest developments in the most prevalent imaging modality (x-ray computed tomography (CT)) in its latest incarnation: Spectral, Dual-Energy, and Photon Counting CT. Disadvantages of the conventional single-energy technique used by CT technology are that different materials cannot be distinguished and that the noise is larger. To address these problems, a novel spectral CT concept has been proposed. Spectral Dual-Energy CT (DE-CT) acquires two sets of spectral data, and Spectral Photon Counting CT (PC-CT) detects energy of x-ray photons to reveal additional material information of objects by using novel energy-sensitive, photon-counting detectors. The K-edge imaging may be a gateway for functional or molecular CT. The book covers detectors and electronics, image reconstruction methods, image quality assessments, a simulation tool, nanoparticle contrast agents, and clinical applications for spectral CT.




Photon Counting Computed Tomography


Book Description

This book will provide readers with a good overview of some of most recent advances in the field of Photon Counting CT technology for X-ray medical imaging, especially as it pertains to new detectors. There will be a good mixture of general chapters in both technology and applications in CT medical imaging. The book will have an in-depth review of the research topics from world-leading specialists in the field. The conversion of the X-ray signal into analogue/digital value will be covered in some chapters. The authors also provide a review of CMOS chips for X-ray image sensors, methods of material discrimination and image reconstruction techniques. Covers a broad range of topics, including an introduction to novel spectral Computed Tomography; Includes in-depth analysis on how to optimize X-ray detection; Discusses analysis of electronics for X-ray detection.




Spectral Computed Tomography


Book Description

Computed tomography (CT) is a widely used x-ray scanning technique. In its prominent use as a medical imaging device, CT serves as a workhorse in many clinical settings throughout the world. It provides answers to urgent diagnostic tasks such as oncology tumor staging, acute stroke analysis, or radiation therapy planning. Spectral Computed Tomography provides a concise, practical coverage of this important medical tool. The first chapter considers the main clinical motivations for spectral CT applications. In Chapter 2, the measurement properties of spectral CT systems are described. Chapter 3 provides an overview of the current state of research on spectral CT algorithms. Based on this overview, the technical realization of spectral CT systems is evaluated in Chapter 4. Device approaches such as DSCT, kV switching, and energy-resolving detectors are compared. Finally, Chapter 5 summarizes various algorithms for spectral CT reconstructions and spectral CT image postprocessing, and links these algorithms to clinical use cases







Molecular Imaging in Oncology


Book Description

This book discusses the most significant recent advances in oncological molecular imaging, covering the full spectrum from basic and preclinical research to clinical practice. The content is divided into five sections, the first of which is devoted to standardized and emerging technologies and probe designs for different modalities, such as PET, SPECT, optical and optoacoustic imaging, ultrasound, CT, and MRI. The second section focuses on multiscale preclinical applications ranging from advanced microscopy and mass spectroscopy to whole-body imaging. In the third section, various clinical applications are presented, including image-guided surgery and the radiomic analysis of multiple imaging features. The final two sections are dedicated to the emerging, crucial role that molecular imaging can play in the planning and monitoring of external and internal radiotherapy, and to future challenges and prospects in multimodality imaging. Given its scope, the handbook will benefit all readers who are interested in the revolution in diagnostic and therapeutic oncology that is now being brought about by molecular imaging.







Targeted Molecular Imaging in Oncology


Book Description

Cancer cells dedifferentiate with repect to cell function; their vascularity is more leaky, but perfusion is heterogenerously reduced, and interstitial fluid pressure is high, severely retarding delivery of agents from the blood. Targeted imaging is designed to produce a detectable difference between tissue that is visualized with single photon and positron emission tomography, magnetic resonance imaging, computed tomography, or ultrasonography. This book uniquely reports strategies for the application of molecular targeted imaging agents such as antibodies, peptides, receptors and contrast agents in the biologic grading of tumors, differential diagnosis of tumors, prediction of therapeutic response and monitoring tumor response to treatment. This book also describes updated information about the imaging of tumor angiogenesis, hypoxia, apoptosis and gene delivery as well as expression in the understanding and utility of tumor molecular biology for better cancer management.




Radiation Detectors for Medical Imaging


Book Description

Radiation Detectors for Medical Imaging discusses the current state of the art and future prospects of photon-counting detectors for medical imaging applications. Featuring contributions from leading experts and pioneers in their respective fields, this book:Describes x-ray spectral imaging detectors based on cadmium zinc telluride (CdZnTe) and cad




Imaging in Dermatology


Book Description

Imaging in Dermatology covers a large number of topics in dermatological imaging, the use of lasers in dermatology studies, and the implications of using these technologies in research. Written by the experts working in these exciting fields, the book explicitly addresses not only current applications of nanotechnology, but also discusses future trends of these ever-growing and rapidly changing fields, providing clinicians and researchers with a clear understanding of the advantages and challenges of laser and imaging technologies in skin medicine today, along with the cellular and molecular effects of these technologies. - Outlines the fundamentals of imaging and lasers for dermatology in clinical and research settings - Provides knowledge of current and future applications of dermatological imaging and lasers - Coherently structured book written by the experts working in the fields covered