Organic Nanoreactors


Book Description

Organic Nanoreactors: From Molecular to Supramolecular Organic Compounds provides a unique overview of synthetic, porous organic compounds containing a cavity which can encapsulate one or more guest(s). Confined space within a nanoreactor can isolate the guest(s) from the bulk and effectively influence the reaction inside the nanoreactor. Naturally occurring enzymes are compelling catalysts for selective reactions as their three-dimensional structures build up clefts, caves, or niches in which the active site is located. Additionally, reactive sites carrying special functional groups allow only specific reagents to react in a particular way, to lead to specific enantiomers as products. Equipped with suitable functional groups, then, nanoreactors form a new class of biomimetic compounds, which have multiple important applications in the synthesis of nanomaterials, catalysis, enzyme immobilization, enzyme therapy, and more. This book addresses various synthetic, organic nanoreactors, updating the previous decade of research and examining recent advances in the topic for the first comprehensive overview of this exciting group of compounds, and their practical applications. Bringing in the Editor's experience in both academic research and industrial applications, Organic Nanoreactors focuses on the properties and applications of well-known as well as little-examined nanoreactor compounds and materials and includes brief overviews of synthetic routes and characterization methods. - Focuses on organic nanoreactor compounds for greater depth - Covers the molecular, supramolecular, and macromolecular perspectives - Compiles previous and current sources from this growing field in one unique reference - Provides brief overviews of synthetic routes and characterization methods




Bioanalytical Chemistry (Second Edition)


Book Description

Interdisciplinary knowledge is becoming increasingly important to the modern scientist. This invaluable textbook covers bioanalytical chemistry (mainly the analysis of proteins and DNA) and explains everything for the non-biologist. Electrophoresis, mass spectrometry, biosensors, bioassays, DNA and protein sequencing are not necessarily all included in conventional analytical chemistry textbooks. The book describes the basic principles and the applications of instrumental and molecular methods. It is particularly useful to chemistry and engineering students who already have some basic knowledge about analytical chemistry. This revised second edition contains a new chapter on optical spectroscopy, and updated methods and new references throughout.Andreas Manz received the 2015 Inventor Award for 'Lifetime Achievement' from the European Patent Office.Petra S Dittrich was presented with the Heinrich-Emanuel-Merck Award 2015 at EuroAnalysis2015 Conference.










Advances in Molecular Nanotechnology Research and Application: 2013 Edition


Book Description

Advances in Molecular Nanotechnology Research and Application: 2013 Edition is a ScholarlyEditions™ book that delivers timely, authoritative, and comprehensive information about Molecular Motors. The editors have built Advances in Molecular Nanotechnology Research and Application: 2013 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Molecular Motors in this book to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Advances in Molecular Nanotechnology Research and Application: 2013 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.




Advanced Sensor and Detection Materials


Book Description

Presents a comprehensive and interdisciplinary review of the major cutting-edge technology research areas—especially those on new materials and methods as well as advanced structures and properties—for various sensor and detection devices The development of sensors and detectors at macroscopic or nanometric scale is the driving force stimulating research in sensing materials and technology for accurate detection in solid, liquid, or gas phases; contact or non-contact configurations; or multiple sensing. The emphasis on reduced-scale detection techniques requires the use of new materials and methods. These techniques offer appealing perspectives given by spin crossover organic, inorganic, and composite materials that could be unique for sensor fabrication. The influence of the length, composition, and conformation structure of materials on their properties, and the possibility of adjusting sensing properties by doping or adding the side-groups, are indicative of the starting point of multifarious sensing. The role of intermolecular interactions, polymer and ordered phase formation, as well as behavior under pressure and magnetic and electric fields are also important facts for processing ultra-sensing materials. The 15 chapters written by senior researchers in Advanced Sensor and Detection Materials cover all these subjects and key features under three foci: 1) principals and perspectives, 2) new materials and methods, and 3) advanced structures and properties for various sensor devices.




Nanotechnology and Biosensors


Book Description

Nanotechnology and Biosensors shows how nanotechnology is used to create affordable, mass-produced, portable, small sized biosensors to directly monitor environmental pollutants. In addition, it provides information on their integration into components and systems for mass market applications in food analysis, environmental monitoring and health diagnostics. Nanotechnology has led to a dramatic improvement in the performance, sensitivity and selectivity of biosensors. As metal-oxide and carbon nanostructures, gold and magnetite nanoparticles, and the integration of dendrimers in biosensors using nanotechnology have contributed greatly in making biosensors more effective and affordable on a mass-market level, this book presents a timely resource on the topic. - Highlights nanotechnology-based approaches to the detection of enzyme inhibitors, direct enzymatic and microbial detection of metabolites, and nutrients using biosensors - Includes examples on how nanotechnology has lead to improvements in the construction of portable, selective and sensitive biosensing devices - Offers thorough coverage of biomarker/biosensor interaction for the rapid detection of toxicants and pollutants




Advanced Topics on Crystal Growth


Book Description

Crystal growth is the key step of a great number of very important applications. The development of new devices and products, from the traditional microelectronic industry to pharmaceutical industry and many others, depends on crystallization processes. The objective of this book is not to cover all areas of crystal growth but just present, as specified in the title, important selected topics, as applied to organic and inorganic systems. All authors have been selected for being key researchers in their field of specialization, working in important universities and research labs around the world. The first section is mainly devoted to biological systems and covers topics like proteins, bone and ice crystallization. The second section brings some applications to inorganic systems and describes more general growth techniques like chemical vapor crystallization and electrodeposition. This book is mostly recommended for students working in the field of crystal growth and for scientists and engineers in the fields of crystalline materials, crystal engineering and the industrial applications of crystallization processes.




Recent Advances in Nanotechnology


Book Description

This title includes a number of Open Access chapters.Considered the next industrial revolution, nanotechnology is an exciting field with new advances being reported regularly. It is a very diverse and highly interdisciplinary field, involving the science and engineering fields. Nanotechnolgy deals with the smallest building blocks of matter and inv