Molecular Recognition from Atomic Interactions


Book Description

The failure of the pharmaceutical industry to increase the delivery of new drugs into the market is driving a re-assessment of practices and methods in drug discovery and development. In particular alternative strategies are being pursued to find therapeutics that are more selective, including small molecules that target protein-protein interactions. However, success depends on improving our understanding of the recognition of small molecules by interfaces in order to develop better methods for maximising their affinity and selectivity, whilst trying to confer an appropriate therapeutic profile. This thesis starts with the description of the creation of TIMBAL, a database that holds small molecules disrupting protein-protein interactions. The thesis then focuses on the analysis of these molecules and their interactions in a medicinal chemistry and structural biology context. TIMBAL molecules are profiled against other sets of molecules (drugs, drug-like and screening compounds) in terms of molecular properties. Using the structural databases in the Blundell group, the atomic detail of the interaction patterns of TIMBAL molecules with their protein targets are compared with other molecules interacting with proteins, comprising natural molecules, small peptides, synthetic small molecules (including drug-like and drugs) and other proteins. The structural features and composition of the binding sites of these complexes are also analysed. Keeping in mind that current drug candidates are somewhat too lipophilic to succeed, these interaction profiles are defined in terms of polar and apolar contacts, with the aim of migrating natural patterns into the design of new therapeutics.




Principles of Molecular Recognition


Book Description

The importance of molecular recognition in chemistry and biology is reflected in a recent upsurge in relevant research, promoted in particular by high-profile initiatives in this area in Europe, the USA and Japan. Although molecular recognition is necessarily microscopic in origin, its consequences are de facto macroscopic. Accordingly, a text that starts with intermolecular interactions between simple molecules and builds to a discussion of molecular recognition involving larger scale systems is timely. This book was planned with such a development in mind. The book begins with an elementary but rigorous account of the various types of forces between molecules. Chapter 2 is concerned with the hydrogen bond between pairs of simple molecules in the gas phase, with particular reference to the preferred relative orientation of the pair and the ease with which this can be distorted. This microscopic view continues in chapter 3 wherein the nature of interactions between solute molecules and solvents or between two or more solutes is examined from the experimental standpoint, with various types of spectroscopy providing the probe of the nature of the interactions. Molecular recognition is central to the catalysis of chemical reactions, especially when bonds are to be broken and formed under the severe con straint that a specific configuration is to result, as in the production of enan tiotopically pure compounds. This important topic is considered in chapter 4.







Molecular Recognition and Inclusion


Book Description

This volume presents articles on the developing field of molecular interactions, molecular recognition, crystal engineering, and structural determination of complex molecular systems. The approaches described are interdisciplinary in nature, reflecting the concept of the ISMRI series of symposia.




Principles of Molecular Recognition


Book Description

The importance of molecular recognition in chemistry and biology is reflected in a recent upsurge in relevant research, promoted in particular by high-profile initiatives in this area in Europe, the USA and Japan. Although molecular recognition is necessarily microscopic in origin, its consequences are de facto macroscopic. Accordingly, a text that starts with intermolecular interactions between simple molecules and builds to a discussion of molecular recognition involving larger scale systems is timely. This book was planned with such a development in mind. The book begins with an elementary but rigorous account of the various types of forces between molecules. Chapter 2 is concerned with the hydrogen bond between pairs of simple molecules in the gas phase, with particular reference to the preferred relative orientation of the pair and the ease with which this can be distorted. This microscopic view continues in chapter 3 wherein the nature of interactions between solute molecules and solvents or between two or more solutes is examined from the experimental standpoint, with various types of spectroscopy providing the probe of the nature of the interactions. Molecular recognition is central to the catalysis of chemical reactions, especially when bonds are to be broken and formed under the severe con straint that a specific configuration is to result, as in the production of enan tiotopically pure compounds. This important topic is considered in chapter 4.




Inclusion Phenomena and Molecular Recognition


Book Description

The Fifth International Symposium on Inclusion Phenomena and Molecular Recognition was held September 18-23, 1988 at Orange Beach, Alabama. This followed previous very successful symposia in Warsaw (1980), Parma (1982), Tokyo (1984), and Lancaster (1986). The overall tone of the event at Orange Beach was expressed elegantly by Fraser Stoddart at the close of his lecture: "At a meeting like this, I think we should be asking ourselves more openly where we have come from and where we are going to. I am certainly willing to put my head on the block. Chemistry, as I see it, is entering a golden age of opportunity and those of us here who respond to the multidisciplinary challenge of the subject will perhaps start the movement to reunite the chemical sciences for the fIrst time in more than a century. Given the recognition granted through Charles Pedersen, Donald Cram, and Jean-Marie Lehn to our field from Stockholm last year, there are many here who are surely poised - if they have not already done so - to capture the academic high ground and intellectual leadership of our subject. And what is more - it will be on the back of our fundamental science that many of the exciting technological advances of the twenty-first century will be forged. " In order to capture the flavor and excitement of the symposium, herein we present reviews by thirty-eight of the invited lecturers. The program was shaped by the Program Committee: Jerry L. Atwood, Richard A.




Protein-Ligand Interactions


Book Description

The lock-and-key principle formulated by Emil Fischer as early as the end of the 19th century has still not lost any of its significance for the life sciences. The basic aspects of ligand-protein interaction may be summarized under the term 'molecular recognition' and concern the specificity as well as stability of ligand binding. Molecular recognition is thus a central topic in the development of active substances, since stability and specificity determine whether a substance can be used as a drug. Nowadays, computer-aided prediction and intelligent molecular design make a large contribution to the constant search for, e. g., improved enzyme inhibitors, and new concepts such as that of pharmacophores are being developed. An up-to-date presentation of an eternally young topic, this book is an indispensable information source for chemists, biochemists and pharmacologists dealing with the binding of ligands to proteins.










Dynamic Force Spectroscopy and Biomolecular Recognition


Book Description

Molecular recognition, also known as biorecognition, is the heart of all biological interactions. Originating from protein stretching experiments, dynamic force spectroscopy (DFS) allows for the extraction of detailed information on the unbinding process of biomolecular complexes. It is becoming progressively more important in biochemical studies and is finding wider applications in areas such as biophysics and polymer science. In six chapters, Dynamic Force Spectroscopy and Biomolecular Recognition covers the most recent ideas and advances in the field of DFS applied to biorecognition: Chapter 1: Reviews the basic and novel aspects of biorecognition and discusses the emerging capabilities of single-molecule techniques to disclose kinetic properties and molecular mechanisms usually hidden in bulk measurements Chapter 2: Describes the basic principle of atomic force microsocopy (AFM) and DFS, with particular attention to instrumental and theoretical aspects more strictly related to the study of biomolecules Chapter 3: Overviews the theoretical background in which experimental data taken in nonequilibrum measurements of biomolecular unbinding forces are extrapolated to equilibrium conditions Chapter 4: Reviews the most common and efficient strategies adopted in DFS experiments to immobilize the interacting biomolecules to the AFM tip and to the substrate Chapter 5: Presents and discusses the most representative aspects related to the analysis of DFS data and the challenges of integrating well-defined criteria to calibrate data in automatic routinary procedures Chapter 6: Overviews the most relevant DFS applications to study biorecognition processes, including the biotin/avidin pair, and selected results on various biological complexes, including antigen/antibody, proteins/DNA, and complexes involved in adhesion processes Chapter 7: Summarizes the main results obtained by DFS applied to study biorecognition processes with forthcoming theoretical and experimental advances Although DFS is a widespread, worldwide technique, no books focused on this subject have been available until now. Dynamic Force Spectroscopy and Biomolecular Recognition provides the state of the art of experimental data analysis and theoretical procedures, making it a useful tool for researchers applying DFS to study biorecognition processes.