Molecular Sensors and Nanodevices


Book Description

Molecular Sensors and Nanodevices: Principles, Designs and Applications in Biomedical Engineering, Second Edition is designed to be used as a foundational text, aimed at graduates, advanced undergraduates, early-career engineers and clinicians. The book presents the essential principles of molecular sensors, including theories, fabrication techniques and reviews. In addition, important devices and recently, highly-cited research outcomes are also cited. This differentiates the book from other titles on the market whose primary focus is more research-oriented and aimed at more of a niche market. - Covers the fundamental principles of device engineering and molecular sensing, sensor theories and applications in biomedical science and engineering - Introduces nano/micro fabrication techniques, including MEMS, bioMEMS, microTAS and nanomaterials science that are essential in the miniaturization of versatile molecular sensors - Explores applications of nanomaterials and biomaterials, including proteins, DNAs, nanoparticles, quantum dots, nanotubes/wires and graphene in biomedicine




Nanotechnology-Enabled Sensors


Book Description

Nanotechnology provides tools for creating functional materials, devices, and systems by controlling materials at the atomic and molecular scales and making use of novel properties and phenomena. Nanotechnology-enabled sensors find applications in several fields such as health and safety, medicine, process control and diagnostics. This book provides the reader with information on how nanotechnology enabled sensors are currently being used and how they will be used in the future in such diverse fields as communications, building and facilities, medicine, safety, and security, including both homeland defense and military operations.




Nanoelectronics: Nanowires, Molecular Electronics, and Nanodevices


Book Description

The latest advances in nanoelectronics This definitive volume addresses the state of the art in nanoelectronics, covering nanowires, molecular electronics, and nanodevices. Written by global experts in the field, Nanoelectronics discusses cutting-edge techniques and emerging materials, such as carbon nanotubes and quantum dots. This pioneering work offers a comprehensive survey of nanofabrication options for use in next-generation technologies. Nanoelectronics covers: Electrical properties of metallic nanowires Electromigration defect nucleation in damascene copper interconnect lines Carbon nanotube interconnects in CMOS integrated circuits Printed organic electronics One-dimensional nanostructure-enabled chemical sensing Cross-section fabrication and analysis of nanoscale device structures and complex organic electronics Microfabrication and applications of nanoparticle-doped conductive polymers Single-electron conductivity in organic nanostructures for transistors and memories Synthesis of molecular bioelectronic nanostructures Nanostructured electrode materials for advanced Li-ion batteries Quantum-dot devices based on carbon nanotubes Carbon nanotubes as electromechanical actuators Low-level nanoscale electrical measurements and ESD Nanopackaging




Biosensors Based on Nanomaterials and Nanodevices


Book Description

Biosensors Based on Nanomaterials and Nanodevices links interdisciplinary research from leading experts to provide graduate students, academics, researchers, and industry professionals alike with a comprehensive source for key advancements and future trends in nanostructured biosensor development. It describes the concepts, principles, materials, device fabrications, functions, system integrations, and applications of various types of biosensors based on signal transduction mechanisms, including fluorescence, photonic crystal, surface-enhanced Raman scattering, electrochemistry, electro-luminescence, field-effect transistor, and magnetic effect. The book: Explains how to utilize the unique properties of nanomaterials to construct nanostructured biosensors to achieve enhanced performance Features examples of biosensors based on both typical and emerging nanomaterials, such as gold nanoparticles, quantum dots, graphene, graphene oxides, magnetic nanoparticles, carbon nanotubes, inorganic nanowires/nanorods, plasmonic nanostructures, and photonic crystals Demonstrates the broad applications of nanostructured biosensors in environmental monitoring, food safety, industrial quality assurance, and in vitro and in vivo health diagnosis Inspires new ideas for tackling multiscale and multidisciplinary issues in developing high-performance biosensors for complex practical biomedical problems Focusing on the connection between nanomaterials research and biosensor development, Biosensors Based on Nanomaterials and Nanodevices illustrates the exciting possibilities and critical challenges of biosensors based on nanomaterials and nanodevices for future health monitoring, disease diagnosis, therapeutic treatments, and beyond.




Molecular Imprinting for Nanosensors and Other Sensing Applications


Book Description

Molecular Imprinting for Nanosensors and Other Sensing Applications provides fundamental knowledge on molecular imprinting, including types, preparation methods, properties and characterization techniques. The book also covers the state-of-the-art technological developments of sensors that incorporate with microfluidic systems, lab-on-a-chip-tools, and other techniques. Sections discuss the integration of molecularly imprinted polymers with current top-notch tools and platforms that facilitate their potential applications in the realms of medicine, pharmaceuticals and environmental monitoring. Topics of note include molecularly imprinted polymer-based sensor models, their functionalization methodologies, prominent characteristics, and their characterization tools. - Covers, in an in-depth manner, molecular imprinting as it relates to nanosensors - Provides an appropriate resource on the various applications of imprinted sensors, such as their use in the environment, medicine and food industry - Includes future outlooks and expectations for sensor technology




Nanobiosensors


Book Description

Nanobiosensors: Nanotechnology in the Agri-Food Industry, Volume 8, provides the latest information on the increasing demand for robust, rapid, inexpensive, and safe alternative technologies that monitor, test, and detect harmful or potentially dangerous foods. Due to their high sensitivity and selectivity, nanobiosensors have attracted attention for their use in monitoring not only biological contaminants in food, but also potential chemical and physical hazards. This book offers a broad overview regarding the current progress made in the field of nanosensors, including cutting-edge technological progress and the impact of these devices on the food industry. Special attention is given to the detection of microbial contaminants and harmful metabolotes, such as toxins and hormones, which have a great impact on both humans and animal health and feed. - Includes the most up-to-date information on nanoparticles based biosensors and quantum dots for biological detection - Provides application methods and techniques for research analysis for bacteriological detection and food testing - Presents studies using analytical tools to improve food safety and quality analysis




Smart Nanostructure Materials and Sensor Technology


Book Description

This book highlights the significance and usefulness of nanomaterials for the development of sensing devices and their real-life applications. The book also addresses various means of synthesizing 2D/3D nanomaterials, e.g., hydrothermal deposition process, electrospinning, Ostwald ripening, sputtering heterogeneous deposition, liquid-phase preparation, the vapor deposition approach, and aerosol flame synthesis. It presents an informative overview of the role of nanoscale materials in the development of advanced sensor devices at nanoscale and discusses the applications of nanomaterials in different forms prepared by diverse techniques in the field of optoelectronics and biomedical devices. Major features, such as type of nanomaterials, fabrication methods, applications, tasks, benefits and restrictions, and saleable features, are also covered.




Bioinspired Smell and Taste Sensors


Book Description

​This book discusses the field of bioinspired smell and taste sensors which includes many new areas: sensitive materials, physiological modelling and simulation, and more. Similar to biological chemical sensing systems, bioinspired smell and taste sensors are characterized with fast responsive, high specificity and sensitivity. One of the most important parts of the field is that of sensitive elements originated from biological components, which enable the detection of chemical signals by mimicking the biological mechanisms. This book detailed describes processing, devices, recognition principles of sensitive materials, and concrete realizations. It is written for researchers, engineers and biologists who engages in interdisciplinary research and applications. Dr. Ping Wang is a professor at Zhejiang University, Hangzhou, China. Dr. Qingjun Liu is a professor at Zhejiang University, Hangzhou, China. Dr. Chunsheng Wu is an associated professor at Zhejiang University, Hangzhou, China. Dr. K. Jimmy Hsia is a professor at University of Illinois at Urbana-Champaign, Urbana, USA.




Nanosensors for Futuristic Smart and Intelligent Healthcare Systems


Book Description

The book, Nanosensors for Futuristic Smart and Intelligent Healthcare Systems, presents a treatise on nanosensors technology including wearables, implantable devices and wireless tools. The recent pandemic (COVID-19) has changed the behaviour of people towards diagnosis of infectious diseases and monitoring remote patient health status in real-time. The main focus of this book is the basic concepts of nanomaterials and sensing paradigms for medical devices based on nanosensor technology. The book will be valuable to researchers, engineers and scientists interested in the field of healthcare for monitoring health status in real-time.




Nanotechnology-Based Smart Remote Sensing Networks for Disaster Prevention


Book Description

Nanotechnology-Based Smart Remote Sensing Networks for Disaster Prevention outlines how nanotechnology and space technology could be applied for the detection of disaster risks in early stages, using cheap sensors, cheap constellations of low Earth orbit (LEO) satellites, and smart wireless networks with artificial intelligence (AI) tools. Nanomaterial-based sensors (nanosensors) can offer several advantages over their micro-counterparts, such as lower power or self-powered consumption, high sensitivity, lower concentration of analytes, and smaller interaction distances between the object and the sensor. Besides this, with the support of AI tools, such as fuzzy logic, genetic algorithms, neural networks, and ambient intelligence, sensor systems are becoming smarter when a large number of sensors are used. This book is an important reference source for materials scientists, engineers, and environmental scientists who are seeking to understand how nanotechnology-based solutions can help mitigate natural disasters. - Shows how nanotechnology-based solutions can be combined with space technology to provide more effective disaster management solutions - Explores the best materials for manufacturing different types of nanotechnology-based remote sensing devices - Assesses the challenges of creating a nanotechnology-based disaster mitigation system in a cost-effective way