MOLECULAR STRUCTURE AND SPECTROSCOPY


Book Description

Designed to serve as a textbook for postgraduate students of physics and chemistry, this second edition improves the clarity of treatment, extends the range of topics, and includes more worked examples with a view to providing all the material needed for a course in molecular spectroscopy—from first principles to the very useful spectral data that comprise figures, charts and tables. To improve the conceptual appreciation and to help students develop more positive and realistic impressions of spectroscopy, there are two new chapters—one on the spectra of atoms and the other on laser spectroscopy. The chapter on the spectra of atoms is a detailed account of the basic principles involved in molecular spectroscopy. The chapter on laser spectroscopy covers some new experimental techniques for the investigation of the structure of atoms and molecules. Additional sections on interstellar molecules, inversion vibration of ammonia molecule, fibre-coupled Raman spectrometer, Raman microscope, supersonic beams and jet-cooling have also been included. Besides worked-out examples, an abundance of review questions, and end-of-chapter problems with answers are included to aid students in testing their knowledge of the material contained in each chapter. Solutions manual containing the complete worked-out solutions to chapter-end problems is available for instructors.




Molecular Structure and Spectroscopy


Book Description




Molecular Spectroscopy—Experiment and Theory


Book Description

This book reviews various aspects of molecular spectroscopy and its application in materials science, chemistry, physics, medicine, the arts and the earth sciences. Written by an international group of recognized experts, it examines how complementary applications of diverse spectroscopic methods can be used to study the structure and properties of different materials. The chapters cover the whole spectrum of topics related to theoretical and computational methods, as well as the practical application of spectroscopic techniques to study the structure and dynamics of molecular systems, solid-state crystalline and amorphous materials, surfaces and interfaces, and biological systems. As such, the book offers an invaluable resource for all researchers and postgraduate students interested in the latest developments in the theory, experimentation, measurement and application of various advanced spectroscopic methods for the study of materials.




Equilibrium Molecular Structures


Book Description

Molecular structure is the most basic information about a substance, determining most of its properties. Determination of accurate structures is hampered in that every method applies its own definition of "structure" and thus results from different sources can yield significantly different results. Sophisticated protocols exist to account for these







Atomic and Molecular Spectroscopy


Book Description

Spectroscopy is the study of electromagnetic radiation and its interaction with solid, liquid, gas and plasma. It is one of the widely used analytical techniques to study the structure of atoms and molecules. The technique is also employed to obtain information about atoms and molecules as a result of their distinctive spectra. The fast-spreading field of spectroscopic applications has made a noteworthy influence on many disciplines, including energy research, chemical processing, environmental protection and medicine. This book aims to introduce students to the topic of spectroscopy. The author has avoided the mathematical aspects of the subject as far as possible; they appear in the text only when inevitable. Including topics such as time-dependent perturbation theory, laser action and applications of Group Theory in interpretation of spectra, the book offers a detailed coverage of the basic concepts and applications of spectroscopy.




The Spectra and Structures of Simple Free Radicals


Book Description

"Authoritative and clearly written."—Applied Optics The direct observation of short-lived free radicals and the consequent study of their structure and reactions have led to important developments in almost every branch of chemistry as well as in other areas. This volume by a Nobel laureate offers an excellent introduction to the essentials of molecular spectroscopy. The introductory chapter discusses experimental methods and illustrates the observed spectra of various molecules and free radicals. Subsequent chapters explore rotational, vibrational, and electronic energy levels of diatomic molecules and ions; radiative transitions; linear and nonlinear polyatomic radicals and ions; continuous and diffuse spectra; predissociation and pre-ionization; and recombination. The well-illustrated text features more than 100 figures and spectra. A distilled version of the author's monumental three-volume study, Molecular Spectra and Molecular Structure, it constitutes a superb resource for anyone wishing a concise but complete treatment of the fundamentals of molecular spectroscopy.




An Introduction to Spectroscopy, Atomic Structure and Chemical Bonding


Book Description

An Introduction to Spectroscopy presents the most fundamental concepts of inorganic chemistry at a level appropriate for first year students and in a manner comprehensible to them. This is true even of 'difficult' topics such as the wave mechanical atom, symmetry elements and symmetry operations, and the ligand group orbital approach to bonding, The book contains many useful diagrams illustrating (among other things) the angular dependence of atomic wave functions the derivation of energy level diagrams for polyatomic molecules; close packed lattices and ionic crystal structures. The diagrams of the periodic variation of atomic and molecular properties, showing trends across periods and down groups simultaneously, are especially instructive. Spectroscopy is presented mainly as a tool for the elucidation of atomic and molecular structures. Each chapter begins with a clear and concise statement of "What Every First-year Student Should Know About . . ." outlining the background knowledge that the student is assumed to have from previous courses and thus pointing out what topics might need to be reviewed. There are also detailed statements of the objectives of each chapter, a number of worked examples interspersed in the text, and a comprehensive set of problems and exercises to test the student's understanding. Tables of data throughout the text and appendices at the end provide much valuable information.




Molecular Symmetry and Spectroscopy


Book Description

Molecular Symmetry and Spectroscopy deals with the use of group theory in quantum mechanics in relation to problems in molecular spectroscopy. It discusses the use of the molecular symmetry group, whose elements consist of permutations of identical nuclei with or without inversion. After reviewing the permutation groups, inversion operation, point groups, and representation of groups, the book describes the use of representations for labeling molecular energy. The text explains an approximate time independent Schrödinger equation for a molecule, as well as the effect of a nuclear permutation or the inversion of E* on such equation. The book also examines the expression for the complete molecular Hamiltonian and the several groups of operations commuting with the Hamiltonian. The energy levels of the Hamiltonian can then be symmetrically labeled by the investigator using the irreducible representations of these groups. The text explains the two techniques to change coordinates in a Schrödinger equation, namely, (1) by using a diatomic molecule in the rovibronic Schrödinger equation, and (2) by a rigid nonlinear polyatomic molecule. The book also explains that using true symmetry, basis symmetry, near symmetry, and near quantum numbers, the investigator can label molecular energy levels. The text can benefit students of molecular spectroscopy, academicians, and investigators of molecular chemistry or quantum mechanics.




Atomic and Molecular Spectroscopy


Book Description

A wide-ranging review of modern techniques in atomic and molecular spectroscopy. A brief description of atomic and molecular structure is followed by the relevant energy structure expressions. A discussion of radiative properties and the origin of spectra leads into coverage of X-ray and photoelectron spectroscopy, optical spectroscopy, and radiofrequency and microwave techniques. The treatment of laser spectroscopy investigates various tunable sources and a wide range of techniques characterized by high sensitivity and high resolution. Throughout this book, the relation between fundamental and applied aspects is shown, in particular by descriptions of applications to chemical analysis, photochemistry, surface characterisation, environmental and medical diagnostics, remote sensing and astrophysics.