Molecularly Imprinted Catalysts


Book Description

Molecularly Imprinted Catalysts: Principle, Synthesis, and Applications is the first book of its kind to provide an in-depth overview of molecularly imprinted catalysts and selective catalysis, including technical details, principles of selective catalysis, preparation processes, the catalytically active polymers themselves, and important progress made in this field. It serves as an important reference for scientists, students, and researchers who are working in the areas of molecular imprinting, catalysis, molecular recognition, materials science, biotechnology, and nanotechnology. Comprising a diverse group of experts from prestigious universities and industries across the world, the contributors to this book provide access to the latest knowledge and eye-catching achievements in the field, and an understanding of what progress has been made and to what extent it is being advanced in industry. The first book in the field on molecularly imprinted catalysts (MIPs) Provides a systematic background to selective catalysis, especially the basic concepts and key principles of the different MIP-based catalysts Features state-of-the art presentation of preparation methods and applications of MIPs Written by scientists from prestigious universities and industries across the world, and edited by veteran researchers in molecular imprinting and selective catalysis




Molecularly Imprinted Polymer Composites


Book Description

Molecular Imprinted Polymer Composites: Synthesis, Characterisation and Applications covers the design of composite materials containing nanostructures and molecular imprinted polymers that has materialized the ever-sought out vision of homogeneous molecular imprinted polymers. The inherent high surface-to-volume ratio of nanostructures has served well in increasing the surface area of conventional bulk polymers. In recent decades, molecularly imprinted polymer nanocomposite materials have attracted much attention for their potential applications in the fields of separation science, sensing, drug delivery, waste water treatment and catalysis, hence this book provides a much needed update on progress. Includes information on molecular imprinted polymer composites and their potential for commercialization Discusses their synthesis, characterization and applications Analyzes the effect of incorporation of different nanostructures on the thermodynamic, kinetic and adsorption behavior of imprinted sorbents







Molecular Imprinting


Book Description

Molecular imprinting is one of the most efficient methods to fabricate functional polymer structures with pre-defined molecular recognition selectivity. Molecularly imprinted polymers (MIPs) have been used as antibody and enzyme mimics in a large number of applications. The outstanding stability and straightforward preparation make MIPs ideal substitutes for biologically derived molecular recognition materials, especially for development of affinity separation systems, chemical sensors and high selectivity catalysts. New MIP materials are being increasingly applied to solve challenging problems in environmental sciences, food safety control, biotechnology and medical diagnostics. Development in molecular imprinting research over the past decade has enabled tailor-designed molecular recognition sites to be created in synthetic materials with physical dimensions in the micro- and nano-regime. The new breakthroughs in MIP synthesis/fabrication have brought in many unprecedented functions of the micro- and nano-structured polymers. The aim of this review volume is to introduce to the readers the new developments in molecularly imprinted micro- and nano-structures, and the new applications that have been made possible with the new generation of imprinted materials.




Supramolecular Catalysis


Book Description

Supramolecular Catalysis Provides a timely and detailed overview of the expanding field of supramolecular catalysis The subdiscpline of supramolecular catalysis has expanded in recent years, benefiting from the development of homogeneous catalysis and supramolecular chemistry. Supramolecular catalysis allows chemists to design custom-tailored metal and organic catalysts by devising non-covalent interactions between the various components of the reaction. Edited by two world-renowned researchers, Supramolecular Catalysis: New Directions and Developments summarizes the most significant developments in the dynamic, interdisciplinary field. Contributions from an international panel of more than forty experts address a broad range of topics covering both organic and metal catalysts, including emergent catalysis by self-replicating molecules, switchable catalysis using allosteric effects, supramolecular helical catalysts, and transition metal catalysis in confined spaces. This authoritative and up-to-date volume: Covers ligand-ligand interactions, assembled multi-component catalysts, ligand-substrate interactions, and supramolecular organocatalysis and non-classical interactions Presents recent work on supramolecular catalysis in water, supramolecular allosteric catalysis, and catalysis promoted by discrete cages, capsules, and other confined environments Highlights current research trends and discusses the future of supramolecular catalysis Includes full references and numerous figures, tables, and color illustrations Supramolecular Catalysis: New Directions and Developments is essential reading for catalytic chemists, complex chemists, biochemists, polymer chemists, spectroscopists, and chemists working with organometallics.




Molecularly Imprinted Sensors


Book Description

Molecular imprinting is a rapidly growing field with wide-ranging applications, especially in the area of sensor development, where the process leads to improved sensitivity, reliability, stability, and reproducibility in sensing materials. Molecularly Imprinted Sensors in Analytical Chemistry addresses the most recent advances and challenges relating to molecularly imprinted polymer sensors, and is the only book to compile this information in a single source. From fundamentals to applications, this material will be valuable to researchers working in sensing technologies for pharmaceutical separation and chemical analysis, environmental monitoring and protection, defense and security, and healthcare. Provides a systematic introduction to the different types of MIP-based sensors and reviews the basic principles behind each type of sensor Includes state-of-the-art methodology supported by comparisons and discussions from leading experts in the field Covers all types of sensing modes (optical, electrochemical, thermal, acoustic, etc.), materials and platforms Appeals to a multidisciplinary audience of scientists and graduate students in a wide variety of fields, including chemistry, biology, biomedical science and engineering, and materials science and engineering




Effects of Nanoconfinement on Catalysis


Book Description

This book highlights the recent advances and state of the art in the use of functionalized nanostructured environments on catalysis. Nanoconfinements considered include well-defined molecular cages, imprinted self-assembled supramolecules, polymers made by living or controlled polymerization, metallorganic frameworks, carbon nanotubes, mesoporous inorganic solids, and hybrids thereof. Advantages of nanoconfinement of catalysts discussed include higher activities, improved selectivities, catalyst stabilization, cooperativity effects, simplified protocols for cascade syntheses, better catalyst recovery, and recyclability. The multiple applications that these materials offer are revolutionizing industrial sectors such as energy, electronics, sensors, biomedicine, and separation technology.




Nanozymes: Next Wave of Artificial Enzymes


Book Description

This book describes the fundamental concepts, the latest developments and the outlook of the field of nanozymes (i.e., the catalytic nanomaterials with enzymatic characteristics). As one of today’s most exciting fields, nanozyme research lies at the interface of chemistry, biology, materials science and nanotechnology. Each of the book’s six chapters explores advances in nanozymes. Following an introduction to the rise of nanozymes research in the course of research on natural enzymes and artificial enzymes in Chapter 1, Chapters 2 through 5 discuss different nanomaterials used to mimic various natural enzymes, from carbon-based and metal-based nanomaterials to metal oxide-based nanomaterials and other nanomaterials. In each of these chapters, the nanomaterials’ enzyme mimetic activities, catalytic mechanisms and key applications are covered. In closing, Chapter 6 addresses the current challenges and outlines further directions for nanozymes. Presenting extensive information on nanozymes and supplemented with a wealth of color illustrations and tables, the book offers an ideal guide for readers from disparate areas, including analytical chemistry, materials science, nanoscience and nanotechnology, biomedical and clinical engineering, environmental science and engineering, green chemistry, and novel catalysis.




Handbook of Molecularly Imprinted Polymers


Book Description

This handbook provides a useful guide to preparing molecularly imprinted polymers (MIPs) for diverse practical applications. The first chapter covers the general aspects of molecular imprinting technology. The following chapters focus on specific applications, such as MIPs for sample concentration, MIPs for chromatography and related techniques, MIPs as sensor components, MIPs as traps for medical and bioremediation, MIPs as catalysts and artificial enzymes, and MIPs as components of drug delivery systems. All chapters of the handbook follow a common structure: interest of the MIP approach for that application specific aspects of the synthesis of MIPs for this aim (requirements and general recipes) representative examples of MIPs and their performance for that application a look to the future.




Molecularly Imprinted Polymers as Advanced Drug Delivery Systems


Book Description

This book summarizes the recent advancements for drug delivery systems (DDS) in terms of fundamental principles, rapidly emerging techniques and developing frontiers of molecular imprinting. Especially with the combination of enantioselective molecularly imprinted polymers and water compatible molecularly imprinted polymers, stimuli responsive imprinted DDS have been innovated and applied to dermal delivery, ophthalmic drugs and cancer treatment. This philosophy comprehensively revolutionizes the treatment strategy of human healthcare and provides the possibility to re-trigger in vivo an exhaust system after the complete release of the starting drug cargo, thus enabling precision medicine. To this end, the following unique features will be discussed and concluded: 1) State-of-the-art definition of MIP as drug delivery systems. 2) Advanced techniques and clinical applications of MIP as drug delivery systems in the past decade. 3) Novel frontiers and brand-new technologies, for example, drug delivery devices for zero-order sustained release and stimuli responsive imprinted DDS. 4) Revolutionary impact on dermal delivery, ophthalmic drugs and cancer treatment. 5) Future challenges and perspectives