Molecule-Based Materials


Book Description

The properties of a material depend not only on the specific atoms and molecules it contains, but also on the arrangement of these in space. Many of these three-dimensional arrangements are described as "3D-nets" or "3D-networks". Molecule-Based Materials: The Structural Network Approach is about the synthesis, description, nomenclature and analysis of such nets and the relation of the nets to the physical properties of the materials. It introduces the mathematics, and includes a short guide to programs useful for retrieving, analysing and naming nets. Complete with illustrations and examples of coordination polymer and hydrogen bonded nets, this unique easy-to-read book examines all aspects of 3D nets and will undeniably prove itself valuable to newcomers, well-seasoned students and researchers working in crystallography, inorganic or organic chemistry.* Covers all aspects of molecule-based 3D nets, complete with 3D illustrations * Contains summary tables of all nets* Easy reading eliminates the need for background knowledge in crystallography or mathematics




Magnetism


Book Description




Molecule-based Magnetic Materials


Book Description

Presents a mixture of tutorial chapters on theoretical and practical aspects of molecular magnetism, as well as chapters describing the most recent developments in the field. Provides a comprehensive review of organic molecule-based materials. Includes an introductory section that highlights the theory and instrumental techniques commonly employed in the field. Discusses finite systems such as organic and metal-based dimers, oligomers, and cluster molecules. Describes extended organic systems and extended metal-based systems.




Handbook of Materials Modeling


Book Description

The first reference of its kind in the rapidly emerging field of computational approachs to materials research, this is a compendium of perspective-providing and topical articles written to inform students and non-specialists of the current status and capabilities of modelling and simulation. From the standpoint of methodology, the development follows a multiscale approach with emphasis on electronic-structure, atomistic, and mesoscale methods, as well as mathematical analysis and rate processes. Basic models are treated across traditional disciplines, not only in the discussion of methods but also in chapters on crystal defects, microstructure, fluids, polymers and soft matter. Written by authors who are actively participating in the current development, this collection of 150 articles has the breadth and depth to be a major contributor toward defining the field of computational materials. In addition, there are 40 commentaries by highly respected researchers, presenting various views that should interest the future generations of the community. Subject Editors: Martin Bazant, MIT; Bruce Boghosian, Tufts University; Richard Catlow, Royal Institution; Long-Qing Chen, Pennsylvania State University; William Curtin, Brown University; Tomas Diaz de la Rubia, Lawrence Livermore National Laboratory; Nicolas Hadjiconstantinou, MIT; Mark F. Horstemeyer, Mississippi State University; Efthimios Kaxiras, Harvard University; L. Mahadevan, Harvard University; Dimitrios Maroudas, University of Massachusetts; Nicola Marzari, MIT; Horia Metiu, University of California Santa Barbara; Gregory C. Rutledge, MIT; David J. Srolovitz, Princeton University; Bernhardt L. Trout, MIT; Dieter Wolf, Argonne National Laboratory.







Molecular Materials


Book Description

“... the book does an excellent job of putting together several different classes of materials. Many common points emerge, and the book may facilitate the development of hybrids in which the qualities of the “parents” are enhanced.” –Angew. Chem. Int. Ed. 2011 With applications in optoelectronics and photonics, quantum information processing, nanotechnology and data storage, molecular materials enrich our daily lives in countless ways. These materials have properties that depend on their exact structure, the degree of order in the way the molecules are aligned and their crystalline nature. Small, delicate changes in molecular structure can totally alter the properties of the material in bulk. There has been increasing emphasis on functional metal complexes that demonstrate a wide range of physical phenomena. Molecular Materials represents the diversity of the area, encapsulating magnetic, optical and electrical properties, with chapters on: Metal-Based Quadratic Nonlinear Optical Materials Physical Properties of Metallomesogens Molecular Magnetic Materials Molecular Inorganic Conductors and Superconductors Molecular Nanomagnets Structured to include a clear introduction, a discussion of the basic concepts and up-to-date coverage of key aspects, each chapter provides a detailed review which conveys the excitement of work in that field. Additional volumes in the Inorganic Materials Series: Low-Dimensional Solids | Molecular Materials | Porous Materials | Energy Materials




Molecules Into Materials


Book Description

The last decade has seen the emergence and explosive growth of a new field of condensed matter science: materials chemistry. Transcending the traditional boundaries of organic, inorganic and physical chemistry, this new approach aims to create new molecular and lattice ensembles with unusual physical properties. One of its pioneers, the author has worked on structure-property relations in the inorganic and metal-organic solid state for over 40 years. His seminal work on mixed-valency compounds and inorganic charge transfer spectra in the 1960s set the scene for this new type of chemistry, and his discovery of transparent metal-organic ferromagnets in the 1970s laid the ground rules for much current work on molecular magnets. He has also published extensively on molecular metals and superconductors, especially on charge transfer salts combining conductivity with magnetism. This indispensable volume brings together for the first time a selection of his articles on all these topics, grouped according to theme. Each group is prefaced by a brief introduction for the general reader, putting the articles into their context in the evolution of the subject and describing the intellectual circumstances in which each project was conceived and executed.




Beyond the Molecular Frontier


Book Description

Chemistry and chemical engineering have changed significantly in the last decade. They have broadened their scopeâ€"into biology, nanotechnology, materials science, computation, and advanced methods of process systems engineering and controlâ€"so much that the programs in most chemistry and chemical engineering departments now barely resemble the classical notion of chemistry. Beyond the Molecular Frontier brings together research, discovery, and invention across the entire spectrum of the chemical sciencesâ€"from fundamental, molecular-level chemistry to large-scale chemical processing technology. This reflects the way the field has evolved, the synergy at universities between research and education in chemistry and chemical engineering, and the way chemists and chemical engineers work together in industry. The astonishing developments in science and engineering during the 20th century have made it possible to dream of new goals that might previously have been considered unthinkable. This book identifies the key opportunities and challenges for the chemical sciences, from basic research to societal needs and from terrorism defense to environmental protection, and it looks at the ways in which chemists and chemical engineers can work together to contribute to an improved future.




Vibrational Dynamics Of Molecules


Book Description

Vibrational Dynamics of Molecules represents the definitive concise text on the cutting-edge field of vibrational molecular chemistry. The chapter contributors are a Who's Who of world leaders in the field. The editor, Joel Bowman, is widely considered as one of the founding fathers of theoretical reaction dynamics. The included topics span the field, from fundamental theory such as collocation methods and vibrational CI methods, to interesting applications such as astrochemistry, supramolecular systems and virtual computational spectroscopy. This is a useful reference for theoretical chemists, spectroscopists, physicists, undergraduate and graduate students, lecturers and software developers.




Giant Molecules


Book Description

?? Giant molecules are important in our everyday life. But, as pointed out by the authors, they are also associated with a culture. What Bach did with the harpsichord, Kuhn and Flory did with polymers. We owe a lot of thanks to those who now make this music accessible ??Pierre-Gilles de GennesNobel Prize laureate in Physics(Foreword for the 1st Edition, March 1996)This book describes the basic facts, concepts and ideas of polymer physics in simple, yet scientifically accurate, terms. In both scientific and historic contexts, the book shows how the subject of polymers is fascinating, as it is behind most of the wonders of living cell machinery as well as most of the newly developed materials. No mathematics is used in the book beyond modest high school algebra and a bit of freshman calculus, yet very sophisticated concepts are introduced and explained, ranging from scaling and reptations to protein folding and evolution. The new edition includes an extended section on polymer preparation methods, discusses knots formed by molecular filaments, and presents new and updated materials on such contemporary topics as single molecule experiments with DNA or polymer properties of proteins and their roles in biological evolution.