Molecules to Medicine with mTOR


Book Description

Molecules to Medicine with mTOR: Translating Critical Pathways into Novel Therapeutic Strategies is a one-stop reference that thoroughly covers the mechanistic target of rapamycin (mTOR). mTOR, also known as the mammalian target of rapamycin, is a 289-kDa serine/threonine protein kinase that is ubiquitous throughout the body and has a critical role in gene transcription and protein formation, stem cell development, cell survival and senescence, aging, immunity, tissue regeneration and repair, metabolism, tumorigenesis, oxidative stress, and pathways of programmed cell death that include apoptosis and autophagy. Incorporating a translational medicine approach, this important reference highlights the basic cellular biology of mTOR pathways, presents the role of mTOR during normal physiologic function and disease, and illustrates how the mechanisms of mTOR can be targeted for current and future therapeutic treatment strategies. Coverage of mTOR signaling includes the entire life cycle of cells that impacts multiple systems of the body including those of nervous, cardiovascular, immune, musculoskeletal, endocrine, reproductive, renal, and respiratory origin. - Covers the role of mTOR by internationally recognized expert contributors in the field. - Provides a clear picture of the complexity of mTOR signaling as well as of the different approaches that could target this pathway at various levels. - Includes analysis of the role of mTOR and in both health and disease. - Serves as an important resource for a broad audience of healthcare providers, scientists, drug developers, and students in both clinical and research settings.




Autophagy: Cancer, Other Pathologies, Inflammation, Immunity, Infection, and Aging


Book Description

Autophagy: Cancer, Other Pathologies, Inflammation, Immunity, Infection, and Aging is an eleven volume series that discusses in detail all aspects of autophagy machinery in the context of health, cancer, and other pathologies. Autophagy maintains homeostasis during starvation or stress conditions by balancing the synthesis of cellular components and their deregulation by autophagy. This series discusses the characterization of autophagosome-enriched vaccines and its efficacy in cancer immunotherapy. Autophagy serves to maintain healthy cells, tissues, and organs, but also promotes cancer survival and growth of established tumors. Impaired or deregulated autophagy can also contribute to disease pathogenesis. Understanding the importance and necessity of the role of autophagy in health and disease is vital for the studies of cancer, aging, neurodegeneration, immunology, and infectious diseases. Comprehensive and forward-thinking, these books offer a valuable guide to cellular processes while also inciting researchers to explore their potentially important connections. - Presents the most advanced information regarding the role of the autophagic system in life and death - Examines whether autophagy acts fundamentally as a cell survivor or cell death pathway or both - Introduces new, more effective therapeutic strategies in the development of targeted drugs and programmed cell death, providing information that will aid in preventing detrimental inflammation - Features recent advancements in the molecular mechanisms underlying a large number of genetic and epigenetic diseases and abnormalities, including atherosclerosis and CNS tumors, and their development and treatment - Includes chapters authored by leaders in the field around the globe—the broadest, most expert coverage available




Small Molecules in Hematology


Book Description

This book, written by respected experts, discusses in detail the latest developments in targeted therapy for hematologic malignancies using small molecules. It covers a wide range of small molecules including tyrosine kinase inhibitors, immunomodulatory drugs, the IDH-2 inhibitor enasidenib, the BCL-2 inhibitor venetoclax, and the proteasome inhibitor carfilzomib. For each molecule, aspects such as the chemical structure, mechanism of action, drug targets, drug interactions, preclinical studies, clinical trials, treatment applications, and toxicity are discussed. Extensive research into the molecular mechanisms of cancer has heralded a new age of targeted therapy. The field of precision cancer therapy is now growing rapidly, and the advances being made will mean significant changes in the treatment algorithms for cancer patients. Numerous novel targets that are crucial for the survival of cancer cells can be attacked by small molecules such as protein tyrosine kinase inhibitors. An accompanying volume addresses the use of small molecules in oncology, and the two volumes together represent the third edition of the book originally published under the same title.




Resveratrol


Book Description

This book intends to strike a balance between developments in research and the fact that researchers must absorb and link to scientific advances with clinical practice so that the management of diseases can be based on sound physiological concepts. This book addresses several controversial issues regarding a natural molecule with fascinating pharmacological and therapeutic effects. The book contains three sections: Section 1: Pharmacology and Therapeutic Applications of Resveratrol; Section 2: Bioavailability, Metabolism, and Mode of Action of Resveratrol; Section 3: Resveratrol and Its Role in Chronic and Degenerative Diseases. Does it Add Life to Years or Years to Life? It is our hope that this book will motivate readers to approach the evidence on the use resveratrol and thereby spark an interest in making further contributions to the current scientific debate and treatment development efforts.




T-Cell Development


Book Description

​This volume provides simple and accessible experiment protocols to explore thymus biology. T-Cell Development: Methods and Protocols is divided into three parts presenting short reviews on T cell development, analysis strategies, protocols for cell preparation, flow cytometry analyses, and multiple aspects of thymocyte biology. As a volume in the highly successful Methods in Molecular Biology series, chapters contain introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols, and tips on troubleshooting and avoiding known pitfalls. Concise and easy-to-use, T-Cell Development: Methods and Protocols aims to ensure successful results in the further study of this vital field.




Hepatocellular Carcinoma


Book Description

This book provides a comprehensive overview of the current limitations and unmet needs in Hepatocellular Carcinoma (HCC) diagnosis, treatment, and prevention. It also provides newly emerging concepts, approaches, and technologies to address challenges. Topics covered include changing landscape of HCC etiologies in association with health disparities, framework of clinical management algorithm, new and experimental modalities of HCC diagnosis and prognostication, multidisciplinary treatment options including rapidly evolving molecular targeted therapies and immune therapies, multi-omics molecular characterization, and clinically relevant experimental models. The book is intended to assist collaboration between the diverse disciplines and facilitate forward and reverse translation between basic and clinical research by providing a comprehensive overview of relevant areas, covering epidemiological trend and population-level patient management strategies, new diagnostic and prognostic tools, recent advances in the standard care and novel therapeutic approaches, and new concepts in pathogenesis and experimental approaches and tools, by experts and opinion leaders in their respective fields. By thoroughly and concisely covering whole aspects of HCC care, Hepatocellular Carcinoma serves as a valuable reference for multidisciplinary readers, and promotes the development of personalized precision care strategies that lead to substantial improvement of disease burden and patient prognosis in HCC.




Individualized Drug Therapy for Patients


Book Description

Individualized Drug Therapy for Patients: Basic Foundations, Relevant Software and Clinical Applications focuses on quantitative approaches that maximize the precision with which dosage regimens of potentially toxic drugs can hit a desired therapeutic goal. This book highlights the best methods that enable individualized drug therapy and provides specific examples on how to incorporate these approaches using software that has been developed for this purpose. The book discusses where individualized therapy is currently and offers insights to the future. Edited by Roger Jelliffe, MD and Michael Neely, MD, renowned authorities in individualized drug therapy, and with chapters written by international experts, this book provides clinical pharmacologists, pharmacists, and physicians with a valuable and practical resource that takes drug therapy away from a memorized ritual to a thoughtful quantitative process aimed at optimizing therapy for each individual patient. - 2018 PROSE Awards - Honorable Mention, Clinical Medicine: Association of American Publishers - Uses pharmacokinetic approaches as the tools with which therapy is individualized - Provides examples using specific software that illustrate how best to apply these approaches and to make sense of the more sophisticated mathematical foundations upon which this book is based - Incorporates clinical cases throughout to illustrate the real-world benefits of using these approaches - Focuses on quantitative approaches that maximize the precision with which dosage regimens of potentially toxic drugs can hit a desired therapeutic goal




Autophagy: Biology and Diseases


Book Description

This book series consists of 3 volumes covering the basic science (Volume 1), clinical science (Volume 2) and the technology and methodology (Volume 3) of autophagy. Volume 1 focuses on the biology of autophagy, including the signaling pathways, regulating processes and biological functions. Autophagy is a fundamental physiological process in eukaryotic cells. It not only regulates normal cellular homeostasis, and organ development and function, but also plays an important role in the pathogenesis of a wide range of human diseases. Thanks to the rapid development of molecular biology and omic technologies, research on autophagy has boomed in recent decades, and more and more cellular and animal models and state-of the-art technologies are being used to shed light on the complexity of signaling networks involved in the autophagic process. Further, its involvement in biological functions and the pathogenesis of various diseases has attracted increased attention around the globe. Presenting cutting-edge knowledge, this book series is a useful reference resource for researchers and clinicians who are working on or interested in autophagy.




Autophagy and Senescence in Cancer Therapy


Book Description

Advances in Cancer Research, Volume 150, the latest release in this ongoing series, covers the relationship(s) between autophagy and senescence, how they are defined, and the influence of these cellular responses on tumor dormancy and disease recurrence. Specific sections in this new release include Autophagy and senescence, converging roles in pathophysiology, Cellular senescence and tumor promotion: role of the unfolded protein response, autophagy and senescence in cancer stem cells, Targeting the stress support network regulated by autophagy and senescence for cancer treatment, Autophagy and PTEN in DNA damage-induced senescence, mTOR as a senescence manipulation target: A forked road, and more. Addresses the relationship between autophagy and senescence in cancer therapy Covers autophagy and senescence in tumor dormancy Explores autophagy and senescence in disease recurrence




Breast Cancer Metastasis and Drug Resistance


Book Description

Resistance to therapies, both targeted and systemic, and metastases to distant organs are the underlying causes of breast cancer-associated mortality. The second edition of Breast Cancer Metastasis and Drug Resistance brings together some of the leading experts to comprehensively understand breast cancer: the factors that make it lethal, and current research and clinical progress. This volume covers the following core topics: basic understanding of breast cancer (statistics, epidemiology, racial disparity and heterogeneity), metastasis and drug resistance (bone metastasis, trastuzumab resistance, tamoxifen resistance and novel therapeutic targets, including non-coding RNAs, inflammatory cytokines, cancer stem cells, ubiquitin ligases, tumor microenvironment and signaling pathways such as TRAIL, JAK-STAT and mTOR) and recent developments in the field (epigenetic regulation, microRNAs-mediated regulation, novel therapies and the clinically relevant 3D models). Experts also discuss the advances in laboratory research along with their translational and clinical implications with an overarching goal to improve the diagnosis and prognosis, particularly that of breast cancer patients with advanced disease.