Monitoring the Variability in the Process Using Neutrosophic Statistical Interval Method


Book Description

Existing variance control charts are designed under the assumptions that no uncertain, fuzzy and imprecise observations or parameters are in the population or the sample. Neutrosophic statistics, which is the extension of classical statistics, has been widely used when there is uncertainty in the data.




Monitoring the Variability in the Process Using Neutrosophic Statistical Interval Method


Book Description

Existing variance control charts are designed under the assumptions that no uncertain, fuzzy and imprecise observations or parameters are in the population or the sample. Neutrosophic statistics, which is the extension of classical statistics, has been widely used when there is uncertainty in the data. In this paper, we will originally design S2 control chart under the neutrosophic interval methods.




Monitoring the Process Based on Belief Statistic for Neutrosophic Gamma Distributed Product


Book Description

In this paper, we developed a control chart methodology for the monitoring the mean time between two events using the belief estimator under the neutrosophic gamma distribution. The proposed control chart coeffcients and the neutrosophic average run length (NARL) have been determined using different process settings.




Neutrosophic Sets and Systems, vol. 49/2022


Book Description

“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc. Neutrosophy is a new branch of philosophy that studies the origin, nature, and scope of neutralities, as well as their interactions with different ideational spectra. This theory considers every notion or idea together with its opposite or negation and with their spectrum of neutralities in between them (i.e. notions or ideas supporting neither nor ). The and ideas together are referred to as . Neutrosophy is a generalization of Hegel's dialectics (the last one is based on and only). According to this theory every idea tends to be neutralized and balanced by and ideas - as a state of equilibrium. In a classical way , , are disjoint two by two. But, since in many cases the borders between notions are vague, imprecise, Sorites, it is possible that , , (and of course) have common parts two by two, or even all three of them as well. Neutrosophic Set and Neutrosophic Logic are generalizations of the fuzzy set and respectively fuzzy logic (especially of intuitionistic fuzzy set and respectively intuitionistic fuzzy logic).




A New X-Bar Control Chart for Using Neutrosophic ExponentiallyWeighted Moving Average


Book Description

The existing Shewhart X-bar control charts using the exponentially weighted moving average statistic are designed under the assumption that all observations are precise, determined, and known. In practice, it may be possible that the sample or the population observations are imprecise or fuzzy. In this paper, we present the designing of the X-bar control chart under the symmetry property of normal distribution using the neutrosophic exponentially weighted moving average statistics. We will first introduce the neutrosophic exponentially weighted moving average statistic, and then use it to design the X-bar control chart for monitoring the data under an uncertainty environment. We will determine the neutrosophic average run length using the neutrosophic Monte Carlo simulation. The eciency of the proposed plan will be compared with existing control charts.




Neutrosophic Sets and Systems, vol. 48/2022


Book Description

“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc. Neutrosophy is a new branch of philosophy that studies the origin, nature, and scope of neutralities, as well as their interactions with different ideational spectra. This theory considers every notion or idea together with its opposite or negation and with their spectrum of neutralities in between them (i.e. notions or ideas supporting neither nor ). The and ideas together are referred to as . Neutrosophy is a generalization of Hegel's dialectics (the last one is based on and only). According to this theory every idea tends to be neutralized and balanced by and ideas - as a state of equilibrium. In a classical way , , are disjoint two by two. But, since in many cases the borders between notions are vague, imprecise, Sorites, it is possible that , , (and of course) have common parts two by two, or even all three of them as well. Neutrosophic Set and Neutrosophic Logic are generalizations of the fuzzy set and respectively fuzzy logic (especially of intuitionistic fuzzy set and respectively intuitionistic fuzzy logic).




Research on the topics of neutrosophic operations research


Book Description

In this volume, we present a set of research that was published in cooperation with a number of researchers and those interested in keeping pace with the great scientific development that our contemporary world is witnessing, and one of its products was neutrosophic science, which was founded by the American scientist and mathematical philosopher Florentin Smarandache in 1995. Through it, we present a new vision for some research methods. Operations research to the concepts of this science.




Moving average control chart under neutrosophic statistics


Book Description

Continuous monitoring and improving the production process is a crucial step for the entrepreneur to maintain its position in the market. A successful process monitoring scheme depends upon the specification of the quality being monitored. In this paper, the monitoring of temperature is addressed using the specification of moving average under uncertainty. We determined the coefficients of the proposed chart utilizing the Monte Carlo simulation for a different measure of indeterminacy. The efficiency of the proposed chart has been evaluated by determining the average run lengths using several shift values. A real example of weather-related situation is studied for the practical adoption of the given technique. A comparison study shows that the proposed chart outperforms the existing chart in monitoring temperature-related data.




Advances in Condition Monitoring, Optimization and Control for Complex Industrial Processes


Book Description

The book documents 25 papers collected from the Special Issue “Advances in Condition Monitoring, Optimization and Control for Complex Industrial Processes”, highlighting recent research trends in complex industrial processes. The book aims to stimulate the research field and be of benefit to readers from both academic institutes and industrial sectors.




Cognitive Intelligence with Neutrosophic Statistics in Bioinformatics


Book Description

Cognitive Intelligence with Neutrosophic Statistics in Bioinformatics investigates and presents the many applications that have arisen in the last ten years using neutrosophic statistics in bioinformatics, medicine, agriculture and cognitive science. This book will be very useful to the scientific community, appealing to audiences interested in fuzzy, vague concepts from which uncertain data are collected, including academic researchers, practicing engineers and graduate students. Neutrosophic statistics is a generalization of classical statistics. In classical statistics, the data is known, formed by crisp numbers. In comparison, data in neutrosophic statistics has some indeterminacy. This data may be ambiguous, vague, imprecise, incomplete, and even unknown. Neutrosophic statistics refers to a set of data, such that the data or a part of it are indeterminate in some degree, and to methods used to analyze the data. Introduces the field of neutrosophic statistics and how it can solve problems working with indeterminate (imprecise, ambiguous, vague, incomplete, unknown) data Presents various applications of neutrosophic statistics in the fields of bioinformatics, medicine, cognitive science and agriculture Provides practical examples and definitions of neutrosophic statistics in relation to the various types of indeterminacies