Monodisperse Highly Ordered and Polydisperse Biobased Solid Foams


Book Description

This book discusses the synthesis of chitosan-based solid foams using foam templating. Solid foams with pore sizes between a few micrometres and a few millimetres are widely used in a range of established and emerging applications, including filtration, catalysis, sound and thermal insulation, human protection, and tissue engineering. They are lightweight with large surface-to-volume ratios, and have excellent mechanical, acoustic, and thermal properties. However, most foaming processes are extremely complex, and there remains a lack of sound scientific understanding of—and therefore control over—the parameters that determine the properties of the material. One route towards tailor-made solid foams is liquid foam templating, where the liquid foam is generated first (with the desired structure) before being solidified into a solid foam with the desired structure. This book describes how liquid foam templating can be used to synthesise monodisperse solid foams as well as solid foams with a tuneable polydispersity.




Highly Structured Polymer Foams from Liquid Foam Templates Using Millifluidic Lab-on-a-chip Techniques


Book Description

Polymer foams belong to the solid foams family which are versatile materials, extensively used for a large number of applications such as automotive, packaging, sport products, thermal and acoustic insulators, tissue engineering or liquid absorbents. Composed of air bubbles entrapped in a continuous solid network, they combine the properties of the polymer with those of the foam to create an intriguing and complex material. Incorporating a foam into a polymer network not only allows one to use the wide range of interesting properties that the polymer offers, but also permits to profit from the advantageous properties of foam including lightness, low density, compressibility and high surface-to-volume ratio. Generally, the properties of polymer foams are strongly related to their density and their structure (bubble size and size distribution, bubble arrangement, open vs closed cells). Having a good control over foam properties is thus achieved by first controlling its density and structure.We developed a technique in which solid foams are generated essentially in a two-step process: a sufficiently stable liquid foam with well-controlled structural properties is generated in a first step, and then solidified in a second one. With such a two-step approach, the generation of solid foams can be divided into a number of well-separated sub-tasks which can be controlled and optimised separately. The transition from liquid to solid state is a sensitive issue of a great importance and therefore needs to be controlled with sufficient accuracy. It is essentially composed of three key steps: foam generation, mixing of reactants and foam solidification and requires the optimisation of foam stability in conjunction with an appropriate choice of both foaming time and solidification time. Furthermore, a good homogeneity of the polymer foam calls for a good mixing of the different reactants involved in the foaming and the polymerisation.A particularly powerful demonstration of the advantages of this approach is given by solidifying monodisperse liquid foams generated using millifluidic technique, in which all bubbles have the same size. In a liquid foam, equal-volume bubbles self-order into periodic, close-packed structures under gravity or confinement. As such, monodisperse foams provide simultaneous control over the size and the organisation of the pores in the final solid with an accuracy which is expected to give rise to a better understanding of the structure-property relationship of porous solids and to the development of new porous materials.We therefore aim to explore the new spectrum of properties, which polymer foams offer when we introduce an ordered structure into them since the most widely used polymer foams nowadays have disordered structures. The goal of our study is to demonstrate the feasibility of this two-step approach for different classes of polymers, including biomolecular hydrogel, superabsorbent polymer and polyurethane.For the generation of the structured polymer foams we use Lab-on-a-Chip technologies which allow the “shrinking” of large-scale set-ups to micro/millimetic scale. It permits also to perform “flow chemistry” in which the various liquid and gaseous ingredients of the foam are injected and mixed in a purpose-designed network of the micro- and millifluidic Lab-on-a-Chip. We adjust this approach according to the requirements of each polymer system, i.e. the foaming and the mixing techniques are chosen to fit the properties of each system, and can be exchanged to fit the properties of the studied systems.




Foams


Book Description




Foams


Book Description

Foams are ubiquitous in human life and can be found in a variety of products and materials, such as sodas and sponges. There are liquid foams and solid foams, both of which have distinct properties useful for various applications. This book reviews, researches, and summarizes the potential uses of foam fluids and porous foams in engineering, medicine, and other industries. Chapters discuss different types of foams including multiphase foams, cellular foams, and ceramic foams as well as foam-generating mechanisms and techniques.




Bio-based Polymeric Foam from Soybean Oil and Carbon Dioxide


Book Description

Polymeric foams are complex gas/liquid/solid composite materials with variable density and numerous advantages over bulk polymers. Raw materials currently being foamed are principally petroleum-based. Research seeking new bio-based polymeric foams has developed biobased polyurethane foams from plant-oil triglyceride polyols, whose properties compare to that of petroleum-based insulating foams, and biodegradable starch foams, for use in the packaging industry. The goal of this dissertation is to develop a new type of biobased foam from plant oil that is both stronger and more resilient than starch foam and with a higher bio-content than biobased polyurethane foam. Acrylated epoxidized soybean oil (AESO) possesses a wide range of properties depending on its level of functionality, and was chosen in this work to design resilient, rigid polymeric foams with a high bio-content. During free-radical polymerization, AESO forms a cross-linked, thermosetting polymer network. Carbon dioxide has a high solubility in plant oils and was chosen as the blowing agent for AESO foam. We designed a new foaming process inspired by commercial foaming processes and modified for the AESO/CO 2 system. The monomer was saturated with CO 2 under pressure. Then, extracting the mixture through a heater triggered simultaneous foam expansion and polymerization. The architecture of cured foams showed strong dependency on the foaming procedure and process parameters (timing, pressures, temperatures). We targeted the production of solid foams with a homogeneous, small-celled structure, that confers better physical and mechanical properties. The aging behavior of liquid AESO/CO 2 foam revealed the mechanisms of cell growth and degradation before cure. During foam cure, conflicting interests between polymerization kinetics and foam integrity presented the major design difficulties. The process parameters and foaming procedure were optimized to produce foam with increased homogeneity, smaller cells, and lower density, and strong, semi-rigid thermoset foams with a bio-content superior to 80% were successfully obtained. These foams are good candidates for applications such as foam-core sandwich panels and tissue-scaffolds. Our new foaming process may also be applied to other triglyceride-based monomers and customized according to monomer functionality and desired foam architecture. Biobased foams with various densities, cellular structure, and mechanical properties may be produced.







Photonic Band Gap Materials


Book Description

Photonic band gap crystals offer unique ways to tailor light and the propagation of electromagnetic waves. In analogy to electrons in a crystal, EM waves propagating in a structure with a periodically-modulated dielectric constant are organized into photonic bands separated by gaps in which propagating states are forbidden. Proposed applications of such photonic band gap crystals, operating at frequencies from microwave to optical, include zero- threshold lasers, low-loss resonators and cavities, and efficient microwave antennas. Spontaneous emission is suppressed for photons in the photonic band gap, offering novel approaches to manipulating the EM field and creating high-efficiency light-emitting structures. Photonic Band Gap Materials identifies three most promising areas of research. The first is materials fabrication, involving the creation of high quality, low loss, periodic dielectric structures. The smallest photonic crystals yet fabricated have been made by machining Si wafers along (110), and some have lattice constants as small as 500 microns. The second area is in applications. Possible applications presented are microwave mirrors, directional antennas, resonators (especially in the 2 GHz region), filters, waveguides, Y splitters, and resonant microcavities. The third area covers fundamentally new physical phenomena in condensed matter physics and quantum optics. An excellent review of recent development, covering theoretical, experimental and applied aspects. Interesting and stimulating reading for active researchers, as well as a useful reference for non-specialists.




Theory of Electrophoresis and Diffusiophoresis of Highly Charged Colloidal Particles


Book Description

Theory of Electrophoresis and Diffusiophoresis of Highly Charged Colloidal Particles discusses the electrophoretic and diffusiophoretic motions of various colloidal entities, such as rigid particles, liquid droplets, gas bubbles, and porous particles, focusing on the motion-deterring double-layer polarization effect pertinent to highly charged particles, with the lowly charged ones serving as the limiting cases. Boundary effects such as those from a cylindrical pore, a solid plane, or an air-water interface are analyzed as well for the electrophoretic motion of the various particles considered. Dynamic electrophoresis is also explored and treated. The contents are suitable for researchers, graduate students, or senior college students with some basic background of colloid science and transport phenomena. As there is no closed-form analytical formula in general for the situation of highly charged particles, the results are presented with extensive figures and plots as well as tables under various electrokinetic situations of interest to facilitate the possible use of interested readers. Provides a reliable quantitative prediction of highly charged particles motion with easy-to-apply charts and in-depth understanding of the underlying mechanisms Offers an extensive treatment of direct quantitative predication for non-rigid systems, such as porous particles, liquid drops, and gels, which is especially valuable in proteins and DNA research Discusses highly charged systems with a nearby boundary of practical interests, such as a pore, a solid plane, or an air-water interface, which is of vital interest in fields such as microfluidic operations and biomedical engineering Affords special attention to the polarization effect




Porous Polymers


Book Description

This book gathers the various aspects of the porous polymer field into one volume. It not only presents a fundamental description of the field, but also describes the state of the art for such materials and provides a glimpse into the future. Emphasizing a different aspect of the ongoing research and development in porous polymers, the book is divided into three sections: Synthesis, Characterization, and Applications. The first part of each chapter presents the basic scientific and engineering principles underlying the topic, while the second part presents the state of the art results based on those principles. In this fashion, the book connects and integrates topics from seemingly disparate fields, each of which embodies different aspects inherent in the diverse field of porous polymeric materials.




The Pursuit of Perfect Packing


Book Description

In 1998 Thomas Hales dramatically announced the solution of a problem that has long teased eminent mathematicians: what is the densest possible arrangement of identical spheres? The Pursuit of Perfect Packing recounts the story of this problem and many others that have to do with packing things together. The examples are taken from mathematics, phy