Fully Integrated CMOS Charge Pump Design


Book Description

Due to the continuous power supply reduction, Charge Pumps, also referred to as DC-DC converters, circuits are widely used in integrated circuits (ICs) to generate high voltages for many applications, such as EEP-ROMs, Flash memories for programming and erasing of the floating gate, switched capacitor circuits, operational amplifiers, voltage regulators, LCD drivers, piezoelectricactuators, etc. A charge pump is a kind of DC to DC converter that uses capacitors as energy storage elements to create either a higher or lower voltage power source. The development of the charge pumps is motivated by ever increasing the needs for the small form factor (i.e small size and low weight), high-conversion-efficiency and low costpower management system, which is the best candidate suitable to meet the needs of continuosly shrinking portable electronic devices like MP3 players, cellular phones, PDA's.




A Charge Pump Architecture with High Power-efficiency and Low Output Ripple Noise in 0.5 [micron] CMOS Process Technology


Book Description

"Modern integrated microsystems have several functional blocks which require different voltages to operate adequately. Charge pump circuits are used to generate different voltages to operate adequately. Charge pump circuits are used to generate different voltage domains for different functional blocks on large integrated microsystems. Charge pump is an inductorless DC-DC converter which generates higher positive voltage or lower negative voltage from the applied reference voltage. The thesis presents a high power-efficiency charge pump architecture with low output ripple noise in AMI 0.5 [micron] CMOS process technology. The switching action of the proposed charge pump architecture is controlled by a dual phase non-overlapping clock system. In order to achieve high power-efficiency, the power losses due to the leakage currents, the finite switch resistance and the imperfect charge transfer between the capacitors are taken into consideration and are minimized by proper switching of the charge transfer switches. The proposed charge pump can operate over the wide input voltage range varying from 3 V to 7 V with the power conversion efficiency of 90%. The loading current drive capability of the proposed charge pump ranges from 0 to 45 mA."--Abstract.







Monolithic Phase-Locked Loops and Clock Recovery Circuits


Book Description

Featuring an extensive 40 page tutorial introduction, this carefully compiled anthology of 65 of the most important papers on phase-locked loops and clock recovery circuits brings you comprehensive coverage of the field-all in one self-contained volume. You'll gain an understanding of the analysis, design, simulation, and implementation of phase-locked loops and clock recovery circuits in CMOS and bipolar technologies along with valuable insights into the issues and trade-offs associated with phase locked systems for high speed, low power, and low noise.




Wideband Continuous-time ΣΔ ADCs, Automotive Electronics, and Power Management


Book Description

This book is based on the 18 tutorials presented during the 25th workshop on Advances in Analog Circuit Design. Expert designers present readers with information about a variety of topics at the frontier of analog circuit design, including low-power and energy-efficient analog electronics, with specific contributions focusing on the design of continuous-time sigma-delta modulators, automotive electronics, and power management. This book serves as a valuable reference to the state-of-the-art, for anyone involved in analog circuit research and development.




CMOS


Book Description

This edition provides an important contemporary view of a wide range of analog/digital circuit blocks, the BSIM model, data converter architectures, and more. The authors develop design techniques for both long- and short-channel CMOS technologies and then compare the two.







The Art of Electronics


Book Description