Monomial Algebras


Book Description

Monomial Algebras, Second Edition presents algebraic, combinatorial, and computational methods for studying monomial algebras and their ideals, including Stanley–Reisner rings, monomial subrings, Ehrhart rings, and blowup algebras. It emphasizes square-free monomials and the corresponding graphs, clutters, or hypergraphs. New to the Second Edition Four new chapters that focus on the algebraic properties of blowup algebras in combinatorial optimization problems of clutters and hypergraphs Two new chapters that explore the algebraic and combinatorial properties of the edge ideal of clutters and hypergraphs Full revisions of existing chapters to provide an up-to-date account of the subject Bringing together several areas of pure and applied mathematics, this book shows how monomial algebras are related to polyhedral geometry, combinatorial optimization, and combinatorics of hypergraphs. It directly links the algebraic properties of monomial algebras to combinatorial structures (such as simplicial complexes, posets, digraphs, graphs, and clutters) and linear optimization problems.




The Lefschetz Properties


Book Description

This is a monograph which collects basic techniques, major results and interesting applications of Lefschetz properties of Artinian algebras. The origin of the Lefschetz properties of Artinian algebras is the Hard Lefschetz Theorem, which is a major result in algebraic geometry. However, for the last two decades, numerous applications of the Lefschetz properties to other areas of mathematics have been found, as a result of which the theory of the Lefschetz properties is now of great interest in its own right. It also has ties to other areas, including combinatorics, algebraic geometry, algebraic topology, commutative algebra and representation theory. The connections between the Lefschetz property and other areas of mathematics are not only diverse, but sometimes quite surprising, e.g. its ties to the Schur-Weyl duality. This is the first book solely devoted to the Lefschetz properties and is the first attempt to treat those properties systematically.




Representations of Algebras


Book Description

This volume contains the proceedings of the Conference on Representations of Algebras - Sao Paulo (CRASP), held at the Instituto de Matematica e Estatistica of the Universidade de Sao Paulo, Brazil. It discusses Hopf, tubular, quasischurian, wild hereditary, concealed-canonical Artin, Brauer star, and Koszul algebras.




Monomial Ideals


Book Description

This book demonstrates current trends in research on combinatorial and computational commutative algebra with a primary emphasis on topics related to monomial ideals. Providing a useful and quick introduction to areas of research spanning these fields, Monomial Ideals is split into three parts. Part I offers a quick introduction to the modern theory of Gröbner bases as well as the detailed study of generic initial ideals. Part II supplies Hilbert functions and resolutions and some of the combinatorics related to monomial ideals including the Kruskal—Katona theorem and algebraic aspects of Alexander duality. Part III discusses combinatorial applications of monomial ideals, providing a valuable overview of some of the central trends in algebraic combinatorics. Main subjects include edge ideals of finite graphs, powers of ideals, algebraic shifting theory and an introduction to discrete polymatroids. Theory is complemented by a number of examples and exercises throughout, bringing the reader to a deeper understanding of concepts explored within the text. Self-contained and concise, this book will appeal to a wide range of readers, including PhD students on advanced courses, experienced researchers, and combinatorialists and non-specialists with a basic knowledge of commutative algebra. Since their first meeting in 1985, Juergen Herzog (Universität Duisburg-Essen, Germany) and Takayuki Hibi (Osaka University, Japan), have worked together on a number of research projects, of which recent results are presented in this monograph.




Two-sided Projective Resolutions, Periodicity and Local Algebras


Book Description

This book introduces a new point of view on two-sided projective resolutions of associative algebras. By gluing the vertices we associate a local algebra A_{locto any finite dimensional algebra A. We try to derive information on the cohomology of A from the associated local algebra A_{loc, that is from the local equivalence class of A. For instance, the Anick-Green resolution is minimal for A if and only if it is so for A_{loc. We can read off the relations of A whether there is a locally equivalent algebra that has a finite or a periodic bimodule resolution over itself. Comparing an algebra A and an associated monomial algebra A_{mon, there are inequalities of the following kind: If the resolution of the monomial algebra A_{monis locally finite, then the resolution of A is locally finite. If the resolution of A_{monis locally periodic, then the resolution of A is either locally finite or locally almost periodic.




Effective Methods in Algebraic Geometry


Book Description

The symposium "MEGA-90 - Effective Methods in Algebraic Geome try" was held in Castiglioncello (Livorno, Italy) in April 17-211990. The themes - we quote from the "Call for papers" - were the fol lowing: - Effective methods and complexity issues in commutative algebra, pro jective geometry, real geometry, algebraic number theory - Algebraic geometric methods in algebraic computing Contributions in related fields (computational aspects of group theory, differential algebra and geometry, algebraic and differential topology, etc.) were also welcome. The origin and the motivation of such a meeting, that is supposed to be the first of a series, deserves to be explained. The subject - the theory and the practice of computation in alge braic geometry and related domains from the mathematical viewpoin- has been one of the themes of the symposia organized by SIGSAM (the Special Interest Group for Symbolic and Algebraic Manipulation of the Association for Computing Machinery), SAME (Symbolic and Algebraic Manipulation in Europe), and AAECC (the semantics of the name is vary ing; an average meaning is "Applied Algebra and Error Correcting Codes").




Algebras, Quivers and Representations


Book Description

This book features survey and research papers from The Abel Symposium 2011: Algebras, quivers and representations, held in Balestrand, Norway 2011. It examines a very active research area that has had a growing influence and profound impact in many other areas of mathematics like, commutative algebra, algebraic geometry, algebraic groups and combinatorics. This volume illustrates and extends such connections with algebraic geometry, cluster algebra theory, commutative algebra, dynamical systems and triangulated categories. In addition, it includes contributions on further developments in representation theory of quivers and algebras. Algebras, Quivers and Representations is targeted at researchers and graduate students in algebra, representation theory and triangulate categories. ​




Hochschild Cohomology for Algebras


Book Description

This book gives a thorough and self-contained introduction to the theory of Hochschild cohomology for algebras and includes many examples and exercises. The book then explores Hochschild cohomology as a Gerstenhaber algebra in detail, the notions of smoothness and duality, algebraic deformation theory, infinity structures, support varieties, and connections to Hopf algebra cohomology. Useful homological algebra background is provided in an appendix. The book is designed both as an introduction for advanced graduate students and as a resource for mathematicians who use Hochschild cohomology in their work.




Commutative Algebra


Book Description

This contributed volume brings together the highest quality expository papers written by leaders and talented junior mathematicians in the field of Commutative Algebra. Contributions cover a very wide range of topics, including core areas in Commutative Algebra and also relations to Algebraic Geometry, Algebraic Combinatorics, Hyperplane Arrangements, Homological Algebra, and String Theory. The book aims to showcase the area, especially for the benefit of junior mathematicians and researchers who are new to the field; it will aid them in broadening their background and to gain a deeper understanding of the current research in this area. Exciting developments are surveyed and many open problems are discussed with the aspiration to inspire the readers and foster further research.




Polynomial Identities in Algebras


Book Description

This volume contains the talks given at the INDAM workshop entitled "Polynomial identites in algebras", held in Rome in September 2019. The purpose of the book is to present the current state of the art in the theory of PI-algebras. The review of the classical results in the last few years has pointed out new perspectives for the development of the theory. In particular, the contributions emphasize on the computational and combinatorial aspects of the theory, its connection with invariant theory, representation theory, growth problems. It is addressed to researchers in the field.