Mononuclear Non-heme Iron Dependent Enzymes Part B


Book Description

Mononuclear Non-heme Iron Dependent Enzymes, Volume 703 PART B focuses on methods for studying, characterizing, and leveraging the chemistry of mononuclear non-heme iron dependent enzymes. Chapters in this new release include Photoreduction for Rieske oxygenase chemistry, Insights into the Mechanisms of Rieske Oxygenases from Studying the Unproductive Activation of Dioxygen, Non-heme iron and 2-oxoglutarate enzymes catalyze cyclopropane and azacyclopropane formations, Obtaining precise metrics of substrate positioning in Fe(II)/2OG dependent enzymes using Hyperfine Sublevel Correlation Spectroscopy, Xe-pressurization studies for revealing substrate-entrance tunnels, and much more.Additional chapters cover A tale of two dehydrogenases involved in NADH recycling, Rieske oxygenases and/or their partner reductase proteins, Expression, assay and inhibition of 9-cis-epoxycarotenoid dioxygenase (NCED) from Solanum lycopersicum and Zea mays, Biocatalysis and non-heme iron enzymes, In vitro analysis of the three-component Rieske oxygenase cumene dioxygenase from Pseudomonas fluorescens IP01, Structure and function of carbazole 1,9a-dioxygenase, Characterization of a Mononuclear Nonheme Iron-dependent Mono-oxygenase OzmD in Oxazinomycin Biosynthesis, and much more. - Provides detailed articles regarding how to study the structures and mechanisms of mononuclear non-heme iron dependent enzymes - Guides readers on how to use partner proteins in non-heme iron enzyme catalysis - Includes strategies to employ mononuclear non-heme iron enzymes in biocatalytic applications




Mononuclear Non-heme Iron Dependent Enzymes


Book Description

Mononuclear Non-heme Iron Dependent Enzymes, Volume 703 focuses on methods for studying, characterizing, and leveraging the chemistry of mononuclear non-heme iron dependent enzymes. Chapters in this new release include Photoreduction for Rieske oxygenase chemistry, Insights into the Mechanisms of Rieske Oxygenases from Studying the Unproductive Activation of Dioxygen, Non-heme iron and 2-oxoglutarate enzymes catalyze cyclopropane and azacyclopropane formations, Obtaining precise metrics of substrate positioning in Fe(II)/2OG dependent enzymes using Hyperfine Sublevel Correlation Spectroscopy, Xe-pressurization studies for revealing substrate-entrance tunnels, and much more.Additional chapters cover A tale of two dehydrogenases involved in NADH recycling, Rieske oxygenases and/or their partner reductase proteins, Expression, assay and inhibition of 9-cis-epoxycarotenoid dioxygenase (NCED) from Solanum lycopersicum and Zea mays, Biocatalysis and non-heme iron enzymes, In vitro analysis of the three-component Rieske oxygenase cumene dioxygenase from Pseudomonas fluorescens IP01, Structure and function of carbazole 1,9a-dioxygenase, Characterization of a Mononuclear Nonheme Iron-dependent Mono-oxygenase OzmD in Oxazinomycin Biosynthesis, and much more. - Provides detailed articles regarding how to study the structures and mechanisms of mononuclear non-heme iron dependent enzymes - Guides readers on how to use partner proteins in non-heme iron enzyme catalysis - Includes strategies to employ mononuclear non-heme iron enzymes in biocatalytic applications







Natural Product Biosynthesis by Microorganisms and Plants Part B


Book Description

This new volume of Methods in Enzymology continues the legacy of this premier serial by containing quality chapters authored by leaders in the field. The second of 3 volumes covering Natural product biosynthesis by microorganisms and plants. - This new volume continues the legacy of this premier serial - Contains quality chapters authored by leaders in the field - The second of 3 volumes it has chapters on such topics as biological chlorination, bromination and iodination, and phylogenetic approaches to natural product structure prediction




Spectroscopic and Computational Studies of Mononuclear Nonheme Iron Enzymes


Book Description

Mononuclear nonheme iron enzymes (NH Fe enzymes) catalyze a variety of biological reactions. A large group of NH Fe enzymes use a ferrous active site to activate dioxygen towards reaction with substrate, and require an additional cofactor as a source of electrons necessary for catalysis. The main part of this thesis involves the application of a circular dichroism (CD), magnetic circular dichroism (MCD) and variable temperature, variable-field MCD (VTVH MCD) spectroscopic methodology to a series of alpha-ketoglurate-dependent (alpha-KG-dependent) enzymes for the purpose of understanding how this enzyme family and the NH Ferrous enzymes in general induce the dissociation the generation of a 5C site for dioxgyen reactivity, as well as how dioxygen binding is oriented for proper catalysis. In addition to catalyzing oxidation of organic substrates, NH Fe enzymes are also involved in the catalytic hydrolysis and hydration of substrates. A prominent example of this is nitrile hydratases (NHases), unusual low-spin (LS) Ferric or Cobaltic enzymes that catalyze the conversion of nitriles to amides in soil bacteria. Another part of this thesis involves the spectroscopic characterization of a ferric NHase for the determination of its active site geometric and electronic structure, which are used to calibrate a computational model which is extended to explore the NHase catalytic mechanism.




Iron-containing Enzymes


Book Description

Mononuclear iron containing enzymes are important intermediates in bioprocesses and have potential in the industrial biosynthesis of specific products. This book features topical review chapters by leaders in this field and its various sub-disciplines.







High-valent Oxygen Intermediates of Mononuclear Non-heme Iron Enzymes


Book Description

Mononuclear non-heme iron (NHFe) enzymes catalyze a wide variety of biologically-important reactions such as hydroxylation, halogenation, desaturation, ring closure, and electrophilic aromatic substitution. The key intermediate in the catalytic cycle is the S = 2 Fe(IV)=O species, capable of abstracting an H-atom from inert C--H bonds as strong as 106 kcal/mol. The Fe(IV)=O intermediate in enzymes is transient and difficult to trap; as such, stable synthetic analogs have proven invaluable for spectroscopic elucidation of the geometric/electronic structure of the Fe(IV)=O unit and how it is activated for reactivity. Such biomimetic Fe(IV)=O model complexes can be either intermediate-spin (S = 1) or high-spin (S = 2) in contrast to the S = 2 ground state of enzyme intermediates. For an S = 1 Fe(IV)=O species, the Fe--oxo [beta] [pi]*-frontier molecular orbital (FMO) [from the combination of Fe d(xz/yz) and oxo p(x/y)] is involved in H-atom abstraction, and this FMO requires a side-on approach ([pi]-attack) to achieve maximum overlap with the substrate C--H bond. Through magnetic circular dichroism (MCD) and nuclear vibrational resonance spectroscopy (NRVS) studies, the reactivity of the S = 1 Fe(IV)=O unit has been shown to be affected by the oxo contribution in the [pi]*-FMO, where a larger oxo contribution results in greater orbital overlap (with the substrate C--H) and higher reactivity; also, the [pi]-attack pathway results in steric clashes between substrate and ligand, giving a significant steric contribution to the energy of the reaction barrier. For an S = 2 Fe(IV)=O species, the Fe--oxo [alpha] [sigma]*-FMO [Fe d(z2) and oxo p(z)] is spin-polarized (exchange-stabilized) to an energy level comparable with its [pi]*-FMO, making it accessible as a second pathway ([sigma]-attack) for reactivity. In the S = 2 Fe(IV)=O model complex ligated by TMG3tren, this [sigma]*-FMO is active but is axially hindered by the ligand, again giving a large steric contribution to the reaction barrier; however, the intrinsic electronic reaction barriers of the S = 2 [sigma]*-FMO and the S = 1 [pi]*-FMO are comparable, suggesting they are similarly active in H-atom abstraction. Furthermore, MCD excited-state spectroscopy in combination with multiconfigurational calculations on the S = 2 model reveal two different [pi]-pathways for reactivity involving Fe(III)--oxyl[p(x), [pi]] character, in addition to the [sigma]-pathway involving Fe(III)--oxyl[p(z), [sigma]] character, showing that the S = 2 Fe(IV)=O unit is activated for both [pi] and [sigma] H-atom abstraction reactivities. Finally, the S = 2 enzyme intermediate for the halogenase SyrB2 was trapped and structurally characterized by NRVS, revealing two possible 5-coordinate trigonal bipyramidal candidates with the Fe--oxo vector oriented either perpendicular or parallel to the substrate C--H bond. Importantly, this difference in orientation leads to Fe(III)--OH products oriented efficiently for different rebound reactivities -- native halogenation in the case of perpendicular orientation and non-native hydroxylation in the case of parallel orientation.







2-Oxoglutarate-Dependent Oxygenases


Book Description

Since the discovery of the first examples of 2-oxoglutarate-dependent oxygenase-catalysed reactions in the 1960s, a remarkably broad diversity of alternate reactions and substrates has been revealed, and extensive advances have been achieved in our understanding of the structures and catalytic mechanisms. These enzymes are important agrochemical targets and are being pursued as therapeutic targets for a wide range of diseases including cancer and anemia. This book provides a central source of information that summarizes the key features of the essential group of 2-oxoglutarate-dependent dioxygenases and related enzymes. Given the numerous recent advances and biomedical interest in the field, this book aims to unite the latest research for those already working in the field as well as to provide an introduction for those newly approaching the topic, and for those interested in translating the basic science into medicinal and agricultural benefits. The book begins with four broad chapters that highlight critical aspects, including an overview of possible catalytic reactions, structures and mechanisms. The following seventeen chapters focus on carefully selected topics, each written by leading experts in the area. Readers will find explanations of rapidly evolving research, from the chemistry of isopenicillin N synthase to the oxidation mechanism of 5-methylcytosine in DNA by ten-eleven-translocase oxygenases.