Monotone Structure in Discrete-Event Systems


Book Description

Information previously available only in journal articles and research papers has been brought together in this outstanding text. Uses the unifying theme of monotone structure to transcend the two-perspective approach to DES--one stressing logical/qualitative issues and the other temporal/quantitative analysis--to encompass elements from both. Features notes and references at the end of each chapter.




Introduction to Discrete Event Systems


Book Description

This unique textbook comprehensively introduces the field of discrete event systems, offering a breadth of coverage that makes the material accessible to readers of varied backgrounds. The book emphasizes a unified modeling framework that transcends specific application areas, linking the following topics in a coherent manner: language and automata theory, supervisory control, Petri net theory, Markov chains and queueing theory, discrete-event simulation, and concurrent estimation techniques. Topics and features: detailed treatment of automata and language theory in the context of discrete event systems, including application to state estimation and diagnosis comprehensive coverage of centralized and decentralized supervisory control of partially-observed systems timed models, including timed automata and hybrid automata stochastic models for discrete event systems and controlled Markov chains discrete event simulation an introduction to stochastic hybrid systems sensitivity analysis and optimization of discrete event and hybrid systems new in the third edition: opacity properties, enhanced coverage of supervisory control, overview of latest software tools This proven textbook is essential to advanced-level students and researchers in a variety of disciplines where the study of discrete event systems is relevant: control, communications, computer engineering, computer science, manufacturing engineering, transportation networks, operations research, and industrial engineering. ​Christos G. Cassandras is Distinguished Professor of Engineering, Professor of Systems Engineering, and Professor of Electrical and Computer Engineering at Boston University. Stéphane Lafortune is Professor of Electrical Engineering and Computer Science at the University of Michigan, Ann Arbor.




Monotonicity in Markov Reward and Decision Chains


Book Description

Monotonicity in Markov Reward and Decision Chains: Theory and Applications focuses on monotonicity results for dynamic systems that take values in the natural numbers or in more-dimensional lattices. The results are mostly formulated in terms of controlled queueing systems, but there are also applications to maintenance systems, revenue management, and so forth. The focus is on results that are obtained by inductively proving properties of the dynamic programming value function. A framework is provided for using this method that unifies results obtained for different models. The author also provides a comprehensive overview of the results that can be obtained through it, in which he discusses not only (partial) characterizations of optimal policies but also applications of monotonicity to optimization problems and the comparison of systems. Monotonicity in Markov Reward and Decision Chains: Theory and Applications is an invaluable resource for anyone planning or conducting research in this particular area. The essentials of the topic are presented in an accessible manner and an extensive bibliography guides towards further reading.










The Construction of Optimal Stated Choice Experiments


Book Description

The most comprehensive and applied discussion of stated choice experiment constructions available The Construction of Optimal Stated Choice Experiments provides an accessible introduction to the construction methods needed to create the best possible designs for use in modeling decision-making. Many aspects of the design of a generic stated choice experiment are independent of its area of application, and until now there has been no single book describing these constructions. This book begins with a brief description of the various areas where stated choice experiments are applicable, including marketing and health economics, transportation, environmental resource economics, and public welfare analysis. The authors focus on recent research results on the construction of optimal and near-optimal choice experiments and conclude with guidelines and insight on how to properly implement these results. Features of the book include: Construction of generic stated choice experiments for the estimation of main effects only, as well as experiments for the estimation of main effects plus two-factor interactions Constructions for choice sets of any size and for attributes with any number of levels A discussion of designs that contain a none option or a common base option Practical techniques for the implementation of the constructions Class-tested material that presents theoretical discussion of optimal design Complete and extensive references to the mathematical and statistical literature for the constructions Exercise sets in most chapters, which reinforce the understanding of the presented material The Construction of Optimal Stated Choice Experiments serves as an invaluable reference guide for applied statisticians and practitioners in the areas of marketing, health economics, transport, and environmental evaluation. It is also ideal as a supplemental text for courses in the design of experiments, decision support systems, and choice models. A companion web site is available for readers to access web-based software that can be used to implement the constructions described in the book.




Continuous Multivariate Distributions, Volume 1


Book Description

Seit dem Erscheinen der ersten Auflage dieses Werkes (1972) hat sich das Gebiet der kontinuierlichen multivariaten Verteilungen rasch weiterentwickelt. Moderne Anwendungsfelder sind die Erforschung von Hochwasser, Erdbeben, Regenfällen und Stürmen. Entsprechend wurde das Buch überarbeitet und erweitert: Nunmehr zwei Bände beschreiben eine Vielzahl multivariater Verteilungsmodelle anhand zahlreicher Beispiele. (05/00)




Biostatistical Methods


Book Description

Comprehensive coverage of classical and modern methods of biostatistics Biostatistical Methods focuses on the assessment of risks and relative risks on the basis of clinical investigations. It develops basic concepts and derives biostatistical methods through both the application of classical mathematical statistical tools and more modern likelihood-based theories. The first half of the book presents methods for the analysis of single and multiple 2x2 tables for cross-sectional, prospective, and retrospective (case-control) sampling, with and without matching using fixed and two-stage random effects models. The text then moves on to present a more modern likelihood- or model-based approach, which includes unconditional and conditional logistic regression; the analysis of count data and the Poisson regression model; and the analysis of event time data, including the proportional hazards and multiplicative intensity models. The book contains a technical appendix that presents the core mathematical statistical theory used for the development of classical and modern statistical methods. Biostatistical Methods: The Assessment of Relative Risks: * Presents modern biostatistical methods that are generalizations of the classical methods discussed * Emphasizes derivations, not just cookbook methods * Provides copious reference citations for further reading * Includes extensive problem sets * Employs case studies to illustrate application of methods * Illustrates all methods using the Statistical Analysis System(r) (SAS) Supplemented with numerous graphs, charts, and tables as well as a Web site for larger data sets and exercises, Biostatistical Methods: The Assessment of Relative Risks is an excellent guide for graduate-level students in biostatistics and an invaluable reference for biostatisticians, applied statisticians, and epidemiologists.




Finite Mixture Models


Book Description

An up-to-date, comprehensive account of major issues in finite mixture modeling This volume provides an up-to-date account of the theory and applications of modeling via finite mixture distributions. With an emphasis on the applications of mixture models in both mainstream analysis and other areas such as unsupervised pattern recognition, speech recognition, and medical imaging, the book describes the formulations of the finite mixture approach, details its methodology, discusses aspects of its implementation, and illustrates its application in many common statistical contexts. Major issues discussed in this book include identifiability problems, actual fitting of finite mixtures through use of the EM algorithm, properties of the maximum likelihood estimators so obtained, assessment of the number of components to be used in the mixture, and the applicability of asymptotic theory in providing a basis for the solutions to some of these problems. The author also considers how the EM algorithm can be scaled to handle the fitting of mixture models to very large databases, as in data mining applications. This comprehensive, practical guide: * Provides more than 800 references-40% published since 1995 * Includes an appendix listing available mixture software * Links statistical literature with machine learning and pattern recognition literature * Contains more than 100 helpful graphs, charts, and tables Finite Mixture Models is an important resource for both applied and theoretical statisticians as well as for researchers in the many areas in which finite mixture models can be used to analyze data.




Fundamentals of Queueing Networks


Book Description

This accessible book aims to collect in a single volume the essentials of stochastic networks. Stochastic networks have become widely used as a basic model of many physical systems in a diverse range of fields. Written by leading authors in the field, this book is meant to be used as a reference or supplementary reading by practitioners in operations research, computer systems, communications networks, production planning, and logistics.