More Crop Per Drop: Benchmarking On-farm Irrigation Water Use for Crop Production


Book Description

Efficient use of irrigation is essential to meet food production needs of growing global populations while ensuring long-term sustainability of freshwater resources. However, lack of on-farm irrigation data constrains understanding of irrigation variation and no framework exists to benchmark irrigation use using actual irrigation data. The following work investigates variation in irrigation using a database of ca. 1400 maize and soybean fields over 9 years in Nebraska and presents a framework to benchmark irrigation use using a separate database of ca. 1000 maize and soybean fields in Nebraska as proof of concept. "State-of-the-art" crop models estimated yield potential and irrigation water requirements for each field-year observation and were compared against producer-reported yield and irrigation. Precipitation and ETo accounted for >68% of observed year-to-year variation in irrigation in maize and soybean fields. Irrigation differed by ca.150 mm between regions due to differences in available water holding capacity. Weather and soils explained field-to-field variation in irrigation; however, the majority of field-to-field variation remained unexplained, attributable to producer behavior. Fields with above/below-average irrigation remained consistent across all years, suggesting behavioral components of irrigation variability. Findings illustrate the difficulty of predicting field-scale irrigation due to multiple biophysical and behavioral factors driving irrigation decisions. Increased availability of high-quality, on-farm irrigation data is needed to inform decision-making related to water resources and irrigated agriculture. Benchmarking found that 82% of fields reached ≥70% of yield potential. Nearly 75% of maize and ca. 40% of soybean fields were irrigated above simulated irrigation requirements, indicating room for improvement in irrigation use. Irrigation surplus increased with decreasing soil water holding capacity. Fields irrigated using high-level technology (e.g. soil water sensors) received 95 mm less irrigation than fields where irrigation decisions were not properly informed, with no yield difference between scheduling methods. Half of current irrigation volumes could be potentially reduced in above- or near-average rainfall years if current irrigation surplus is eliminated, but only 10% in drought years. The framework developed can be used to benchmark irrigation use for crop production at different spatial levels (field, region, state), help prioritize extension and research activities, and inform policy and incentive programs..




9789290908487


Book Description





Book Description




More Crop Per Drop


Book Description

This volume is an analytical summary and a critical synthesis of research at the International Water Management Institute over the past decade under its evolving research paradigm known popularly as 'more crop per drop'. The research synthesized here covers the full range of issues falling in the larger canvas of water-food-health-environment interface. Besides its immediate role in sharing knowledge with the research, donor, and policy communities, this volume also has a larger purpose of promoting a new way of looking at the water issues within the broader development context of food, livelihood, health and environmental challenges. More crop per drop: Revisiting a research paradigm contrasts the acquired wisdom and fresh thinking on some of the most challenging water issues of our times. It describes new tools, approaches, and methodologies and also illustrates them with practical application both from a global perspective and within the local and regional contexts of Asia and Africa. Since this volume brings together all major research works of IWMI, including an almost exhaustive list of citations, in one single set of pages, it is very valuable not only as a reference material for researchers and students but also as a policy tool for decision-makers and development agencies.




Guidelines for Benchmarking Performance in the Irrigation and Drainage Sector


Book Description

Many formal irrigation schemes are performing inefficiently for a number of reasons, among which the poor performance of irrigation institutions is one. Benchmarking may be defined as the identification and application of organisation specific best practices with the goal of improving competitiveness, performance and efficiency of such schemes. These guidelines are neither perfect nor final; rather, they represent the beginning of a long and exciting process of benchmarking in the irrigation and drainage sector.




Water Use in Crop Production


Book Description

Make the best use of available water for your crops! Water Use in Crop Production explores innovative methods that determine how much water certain crops need, in certain climates, in order to ensure adequate plant growth and help eliminate water waste. Through this informative book, agronomists, growers, researchers, and graduate students will find methods and techniques for effective water management that will save money and conserve water. Water Use in Crop Production will enable you enhance crop quality and quantity and save one of the earth's most important resource. Comprehensive and thorough, this essential book combines two vital needs, food and water, and examines what must be done in order to keep up with the ever-growing human population. Explaining conservation techniques used in Argentina, Australia, Israel, Morocco, New Zealand, the Philippines, Spain, and the United States, Water Use in Crop Production will help you achieve this goal as it discusses water management measures including: avoiding excessive deep percolation reducing runoff lessening water evaporation through methods such as reducing the capillary water flow to the surface of the soil determining the rates at which water is demanded and can be supplied in a specific area to create a plan for limiting water loss studying the root structure of plants to calculate how much water they need using deficit irrigation to help plants save water for future use evaluating citrus water use through the Penman-Monteith model Containing charts, tables, and examples of the concepts it discusses, this book is the culmination of the latest studies on water storage. Water Use in Crop Production provides you with reliable strategies and methods that will help you lessen water expenditures and improve the vitality of crops anywhere in the world.




Moving Beyond 'More Crop per Drop'


Book Description

Concern over increasing water scarcity has led to the introduction of the concept of agricultural water productivity and an emphasis on interventions to achieve 'more crop per drop'. Yet, a strong debate continues on how the concept is to be defined and used. Drawing largely from the irrigation literature, the origins of the concept and its methodological developments are reviewed, and its use in applied work over two decades is discussed. Based on this analysis of conceptual and applied research, key insights into the concept's contributions and limitations are presented, as well as opportunities for further refinements.




Guidance on realizing real water savings with crop water productivity interventions


Book Description

This technical document contains clear and practical guidelines on how to implement real water savings in agriculture through interventions for enhancing crop water productivity. A distinction is made between real water savings and “apparent” water savings. Apparent water savings record reductions in water withdrawals but do not account for changes in water consumption. Real water savings record reductions in water consumption and non-recoverable return flows (runoff or percolation). This guidance document emphasizes the paradox of water savings at field and basin scales, which usually do not translate into increased water availability for other users, as is commonly believed.




Shaping the Future of Water for Agriculture


Book Description

Agricultural water management is a vital practice in ensuring reduction, and environmental protection. After decades of successfully expanding irrigation and improving productivity, farmers and managers face an emerging crisis in the form of poorly performing irrigation schemes, slow modernization, declining investment, constrained water availability, and environmental degradation. More and better investments in agricultural water are needed. In response, the World Bank, in conjunction with many partner agencies, has compiled a selection of good experiences that can guide practitioners in the design of quality investments in agricultural water. The messages of 'Shaping the Future of Water for Agriculture: A Sourcebook for Investment in Agricultural Water Management' center around the key challenges to agricultural water management, specifically: - Building policies and incentives - Designing institutional reforms - Investing in irrigation systems improvement and modernization - Investing in groundwater irrigation - Investing in drainage and water quality management - Investing in water management in rainfed agriculture - Investing in agricultural water management in multipurpose operations - Coping with extreme climatic conditions - Assessing the social, economic, and environmental impacts of agricultural water investments 'Shaping the Future of Water for Agriculture' is an important resource for those interested and engaged in development with a focus on agricultural water.




Water Requirements for Irrigation and the Environment


Book Description

Irrigated agriculture produces about 40% of all food and fibre on about 16% of all cropped land. As such, irrigated agriculture is a productive user of resources; both in terms of yield per cropped area and in yield per volume of water consumed. Many irrigation projects, however, use (divert or withdraw) much more water than consumed by the crop. The non-consumed fraction of the water may cause a variety of undesirable effects ranging from water-logging and salinity within the irrigated area to downstram water pollution. This book discusses all components of the water balance of an irrigated area; evapotranspiration (Ch.2), effective precipitation (Ch.3) and capillary rise from the groundwater table (Ch.4). Chapter 5 then combines all components into a water management strategy that balances actual evapotranspiration (and thus crop yield) with the groundwater balance of the irrigated area (for a substainable environment). Chapter 6 presents CRIWAR 3.0, a simulation program that combines all water balance components into a single simulation procedure. The chapter describes the use of the CRIWAR software for developing water requirement tables and other useful information based on the selected water management strategy. This version greatly expands upon the capabilities of previously published programs.