Evolution of Thin Film Morphology


Book Description

The focus of this book is on modeling and simulations used in research on the morphological evolution during film growth. The authors emphasize the detailed mathematical formulation of the problem. The book will enable readers themselves to set up a computational program to investigate specific topics of interest in thin film deposition. It will benefit those working in any discipline that requires an understanding of thin film growth processes.







Morphological and Compositional Evolution of Thin Films: Volume 749


Book Description

"The papers compiled in this volume were presented in Symposium W, 'Morphological and Compositional Evolution of Thin Films, ' held December 2-5 at the 2002 MRS Fall Meeting in Boston Massachusetts. They are organized in the order that they were presented."--P. xiii.







Morphological Stability of Thin Films


Book Description

The boundary element method for elastostatics is applied to a thin stability problem arising in solid state surface science. An aim of this work is to determine the morphology of Ge deposited on a Si substrate. Nonstandard boundary conditions at the material interface are used to model the epitaxially grown film. In addition to determining the deformed geometry, it is also necessary to compute the surface stress tensor. Although the surface displacement at the junction between the interface and the Si free surface is not differentiable, the hypersingular integral equation for surface stress can still be used. These techniques are described along with results from 2-D calculations.




Thin Films - Structure and Morphology: Volume 441


Book Description

An interdisciplinary group of materials scientists, physicists, chemists and engineers come together in this book to discuss recent advances in the structure and morphology of thin films. Both scientific and technological issues are addressed. Work on thin films for a host of applications including microelectronics, optics, tribology, biomedical technologies and microelectromechanical systems (MEMS) are featured. Topics include: kinetics of growth; grain growth; instabilities, segregation and ordering; silicides; metallization; stresses in thin films; deposition and growth simulations; energetic growth processes; diamond films and carbide and nitride films.




IUTAM Symposium on Scaling in Solid Mechanics


Book Description

This volume constitutes the Proceedings of the IUTAM Symposium on ‘Scaling in Solid Mechanics’, held in Cardiff from 25th to 29th June 2007. The Symposium was convened to address and place on record topical issues in theoretical, experimental and computational aspects of scaling approaches to solid mechanics and related elds. Scaling is a rapidly expanding area of research having multidisciplinary - plications. The expertise represented in the Symposium was accordingly very wide, and many of the world’s greatest authorities in their respective elds participated. Scaling methods apply wherever there is similarity across many scales or one need to bridge different scales, e. g. the nanoscale and macroscale. The emphasis in the Symposium was upon fundamental issues such as: mathematical foundations of scaling methods based on transformations and connections between multi-scale approaches and transformations. The Symposium remained focussed on fundam- tal research issues of practical signi cance. The considered topics included damage accumulation, growth of fatigue cracks, development of patterns of aws in earth’s core and inice, abrasiveness of rough surfaces, and soon. The Symposium consisted of forty-two oral presentations. All of the lectures were invited. Full record of the programme appears as an Appendix. Several of the lectures are not represented, mainly because of prior commitments to publish elsewhere. The proceedings p- vide a reasonable picture of understanding as it exists at present. The Symposium showed that scaling methods cannot be reduced solely to dimensional analysis and fractal approaches.







Thin Film Growth


Book Description

Thin film technology is used in many applications such as microelectronics, optics, hard and corrosion resistant coatings and micromechanics, and thin films form a uniquely versatile material base for the development of novel technologies within these industries. Thin film growth provides an important and up-to-date review of the theory and deposition techniques used in the formation of thin films. Part one focuses on the theory of thin film growth, with chapters covering nucleation and growth processes in thin films, phase-field modelling of thin film growth and surface roughness evolution. Part two covers some of the techniques used for thin film growth, including oblique angle deposition, reactive magnetron sputtering and epitaxial growth of graphene films on single crystal metal surfaces. This section also includes chapters on the properties of thin films, covering topics such as substrate plasticity and buckling of thin films, polarity control, nanostructure growth dynamics and network behaviour in thin films. With its distinguished editor and international team of contributors, Thin film growth is an essential reference for engineers in electronics, energy materials and mechanical engineering, as well as those with an academic research interest in the topic. Provides an important and up-to-date review of the theory and deposition techniques used in the formation of thin films Focusses on the theory and modelling of thin film growth, techniques and mechanisms used for thin film growth and properties of thin films An essential reference for engineers in electronics, energy materials and mechanical engineering