Morphology Control of Materials and Nanoparticles


Book Description

This is the first major compilation of new advances covering the current status and topics related to the processing and production of precisely controlled materials. It provides a unique source of information and guidance for specialists and non-specialists alike. This book represents an extended introductory treatise on the fundamental aspects, new methods for the precise control of morphology (size, shape, composition, structure etc.) and accurate materials characterization, from both the basic science and the applied engineering viewpoints.




Nanoparticle Technology Handbook


Book Description

Nanoparticle technology, which handles the preparation, processing, application and characterisation of nanoparticles, is a new and revolutionary technology. It becomes the core of nanotechnology as an extension of the conventional Fine Particle / Powder Technology. Nanoparticle technology plays an important role in the implementation of nanotechnology in many engineering and industrial fields including electronic devices, advanced ceramics, new batteries, engineered catalysts, functional paint and ink, Drug Delivery System, biotechnology, etc.; and makes use of the unique properties of the nanoparticles which are completely different from those of the bulk materials.This new handbook is the first to explain complete aspects of nanoparticles with many application examples showing their advantages and advanced development. There are handbooks which briefly mention the nanosized particles or their related applications, but no handbook describing the complete aspects of nanoparticles has been published so far.The handbook elucidates of the basic properties of nanoparticles and various nanostructural materials with their characterisation methods in the first part. It also introduces more than 40 examples of practical and potential uses of nanoparticles in the later part dealing with applications. It is intended to give readers a clear picture of nanoparticles as well as new ideas or hints on their applications to create new materials or to improve the performance of the advanced functional materials developed with the nanoparticles.* Introduces all aspects of nanoparticle technology, from the fundamentals to applications.* Includes basic information on the preparation through to the characterization of nanoparticles from various viewpoints * Includes information on nanostructures, which play an important role in practical applications.




Morphological, Compositional, and Shape Control of Materials for Catalysis


Book Description

Morphological, Compositional, and Shape Control of Materials for Catalysis, Volume 177, the latest in the Studies in Surface Science and Catalysis series, documents the fast-growing developments in the synthesis, characterization, and utilization of nanostructures for catalysis. The book provides essential background on using well-defined materials for catalysis and presents exciting new paradigms in the preparation and application of catalytic materials, with an emphasis on how structure determines catalytic properties. In addition, the book uniquely features discussions on the future of the field, with ample space for future directions detailed in each chapter. - Presents the latest paradigms in the preparation and application of catalytic materials - Provides essential background on using well-defined materials for catalysis - Features discussion of future directions at the end of each chapter




Nanostructure Control of Materials


Book Description

Annotation Nanotechnology is an area of science and technology where dimensions and tolerances in the range of 0.1 nm to 100nm play a critical role. Nanotechnology has opened up new worlds of opportunity. It encompasses precision engineering as well as electronics, electromechanical systems and mainstream biomedical applications in areas as diverse as gene therapy, drug delivery and novel drug discovery techniques. Nanostructured materials present exciting opportunities for manipulating structure and properties on the nanometer scale. The ability to engineer novel structures at the molecular level has led to unprecedented opportunities for materials design. This new book provides detailed insights into the synthesis/structure and property relationships of nanostructured materials. A valuable book for materials scientists, mechanical and electronic engineers and medical researchers. CONTENTS Special properties resulting from nanodimensionality; Nanoparticle technologies; Control of molecular assemblies; Functional organic inorganic nanocomposites; Molecular modelling of nanomorphology in polymers; Nanodimensionality and ionic transport; Multi scale simulation of nanionic polymer systems; Nanoengineering in metallic systems; Characterisation of nanometallic systems with NMR; Mechanical behaviour of metallic nanolaminates; Mechanics of nanocomposite structures; Preparation, properties and performance of Nanocrystalline ceramics; Novel properties from nanoceramics; Hydrogen storage in nanostructured materials; Nanofabrication.




Nanoparticles and Nanostructured Films


Book Description

In this concise handbook leading experts give a broad overview of the latest developments in this emerging and fascinating field of nano-sized materials. Coverage includes new techniques for the synthesis of nanoparticles as well as an in-depth treatment of their characterization and chemical and physical properties. The future applications of these advanced materials are also discussed. The wealth of information included makes this an invaluable guide for graduate students as well as scientists in materials science, chemistry or physics - looking for a comprehensive treatment of the topic.




Novel Nanomaterials for Biomedical, Environmental and Energy Applications


Book Description

Novel Nanomaterials for Biomedical, Environmental, and Energy Applications is a comprehensive study on the cutting-edge progress in the synthesis and characterization of novel nanomaterials and their subsequent advances and uses in biomedical, environmental and energy applications. Covering novel concepts and key points of interest, this book explores the frontier applications of nanomaterials. Chapters discuss the overall progress of novel nanomaterial applications in the biomedical, environmental and energy fields, introduce the synthesis, characterization, properties and applications of novel nanomaterials, discuss biomedical applications, and cover the electrocatalytical and photothermal effects of novel nanomaterials for efficient energy applications. The book will be invaluable to academic researchers and biomedical clinicians working with nanomaterials. - Offers comprehensive details on novel and emerging nanomaterials - Presents a comprehensive view of new and emerging tactics for the synthesis of efficient nanomaterials - Describes and monitors the functions of applications of new and emerging nanomaterials in the biomedical, environmental and energy fields




Characterization of Nanomaterials


Book Description

Characterization of Nanomaterials: Advances and Key Technologies discusses the latest advancements in the synthesis of various types of nanomaterials. The book's main objective is to provide a comprehensive review regarding the latest advances in synthesis protocols that includes up-to-date data records on the synthesis of all kinds of inorganic nanostructures using various physical and chemical methods. The synthesis of all important nanomaterials, such as carbon nanostructures, Core-shell Quantum dots, Metal and metal oxide nanostructures, Nanoferrites, polymer nanostructures, nanofibers, and smart nanomaterials are discussed, making this a one-stop reference resource on research accomplishments in this area. Leading researchers from industry, academia, government and private research institutions across the globe have contributed to the book. Academics, researchers, scientists, engineers and students working in the field of polymer nanocomposites will benefit from its solutions for material problems. - Provides an up-to-date data record on the synthesis of all kinds of organic and inorganic nanostructures using various physical and chemical methods - Presents the latest advances in synthesis protocols - Presents latest techniques used in the physical and chemical characterization of nanomaterials - Covers characterization of all the important materials groups such as: carbon nanostructures, core-shell quantumdots, metal and metal oxide nanostructures, nanoferrites, polymer nanostructures and nanofibers - A broad range of applications is covered including the performance of batteries, solar cells, water filtration, catalysts, electronics, drug delivery, tissue engineering, food packaging, sensors and fuel cells - Leading researchers from industry, academia, government and private research institutes have contributed to the books




Springer Handbook of Nanomaterials


Book Description

The Springer Handbook of Nanomaterials covers the description of materials which have dimension on the "nanoscale". The description of the nanomaterials in this Handbook follows the thorough but concise explanation of the synergy of structure, properties, processing and applications of the given material. The Handbook mainly describes materials in their solid phase; exceptions might be e.g. small sized liquid aerosols or gas bubbles in liquids. The materials are organized by their dimensionality. Zero dimensional structures collect clusters, nanoparticles and quantum dots, one dimensional are nanowires and nanotubes, while two dimensional are represented by thin films and surfaces. The chapters in these larger topics are written on a specific materials and dimensionality combination, e.g. ceramic nanowires. Chapters are authored by well-established and well-known scientists of the particular field. They have measurable part of publications and an important role in establishing new knowledge of the particular field.




Nanoporous Materials III


Book Description

Nanoporous Materials III contains the invited lectures and peer-reviewed oral and poster contributions to be presented at the 3rd Conference on Nanoporous Materials, which will be hosted in Ottawa, Canada, June 2002. The work covers complementary approaches to and recent advances in the field of nanostructured materials with pore sizes larger than 1nm, such as periodic mesoporous molecular sieves M41S and FSM16 and related materials including clays, carbon molecular sieves, colloidal crystal templated organic and inorganic materials, porous polymers and sol gels. The broad range of topics covered in relation to the synthesis and characterization of ordered mesoporous materials are of great importance for advanced adsorption, catalytic and separation processes as well as the development of nanotechnology. The contents of this title are based on topics to be discussed by invited lecturers, which deal with periodic mesoporous organosilicas, stability and catalytic activity of aluminosilicate mesostructures, electron microscopy studies of ordered materials, imprinted polymers and highly porous metal-organic frameworks. The other contributions deal with tailoring the surface and structural properties of nanoporous materials, giving a detailed characterization as well as demonstrating their usefulness for advanced adsorption and catalytic applications.




Nanoparticles in Medicine


Book Description

This book describes the medical applications of inorganic nanoparticles. Nanomedicine is a relatively advanced field, which enhances the treatment of various diseases, offering new options for overcoming the problems associated with the use of conventional medicines. Discussing the toxicological and safety aspects associated with medical applications of nanoparticles, the book presents the latest research on topics such as emerging nanomaterials for cancer therapy, applications of nanoparticles in dentistry, and fluoride nanoparticles for biomedical applications, and also includes chapters on the use of nanoparticles such as silver and gold. /div