MOS Devices for Low-Voltage and Low-Energy Applications


Book Description

Helps readers understand the physics behind MOS devices for low-voltage and low-energy applications Based on timely published and unpublished work written by expert authors Discusses various promising MOS devices applicable to low-energy environmental and biomedical uses Describes the physical effects (quantum, tunneling) of MOS devices Demonstrates the performance of devices, helping readers to choose right devices applicable to an industrial or consumer environment Addresses some Ge-based devices and other compound-material-based devices for high-frequency applications and future development of high performance devices. "Seemingly innocuous everyday devices such as smartphones, tablets and services such as on-line gaming or internet keyword searches consume vast amounts of energy. Even when in standby mode, all these devices consume energy. The upcoming 'Internet of Things' (IoT) is expected to deploy 60 billion electronic devices spread out in our homes, cars and cities. Britain is already consuming up to 16 per cent of all its power through internet use and this rate is doubling every four years. According to The UK's Daily Mail May (2015), if usage rates continue, all of Britain's power supply could be consumed by internet use in just 20 years. In 2013, U.S. data centers consumed an estimated 91 billion kilowatt-hours of electricity, corresponding to the power generated by seventeen 1000-megawatt nuclear power plants. Data center electricity consumption is projected to increase to roughly 140 billion kilowatt-hours annually by 2020, the equivalent annual output of 50 nuclear power plants." —Natural Resources Defense Council, USA, Feb. 2015 All these examples stress the urgent need for developing electronic devices that consume as little energy as possible. The book “MOS Devices for Low-Voltage and Low-Energy Applications” explores the different transistor options that can be utilized to achieve that goal. It describes in detail the physics and performance of transistors that can be operated at low voltage and consume little power, such as subthreshold operation in bulk transistors, fully depleted SOI devices, tunnel FETs, multigate and gate-all-around MOSFETs. Examples of low-energy circuits making use of these devices are given as well. "The book MOS Devices for Low-Voltage and Low-Energy Applications is a good reference for graduate students, researchers, semiconductor and electrical engineers who will design the electronic systems of tomorrow." —Dr. Jean-Pierre Colinge, Taiwan Semiconductor Manufacturing Company (TSMC) "The authors present a creative way to show how different MOS devices can be used for low-voltage and low-power applications. They start with Bulk MOSFET, following with SOI MOSFET, FinFET, gate-all-around MOSFET, Tunnel-FET and others. It is presented the physics behind the devices, models, simulations, experimental results and applications. This book is interesting for researchers, graduate and undergraduate students. The low-energy field is an important topic for integrated circuits in the future and none can stay out of this." —Prof. Joao A. Martino, University of Sao Paulo, Brazil




Nano Devices and Circuit Techniques for Low-Energy Applications and Energy Harvesting


Book Description

This book describes the development of core technologies to address two of the most challenging issues in research for future IT platform development, namely innovative device design and reduction of energy consumption. Three key devices, the FinFET, the TunnelFET, and the electromechanical nanoswitch are described with extensive details of use for practical applications. Energy issues are also covered in a tutorial fashion from material physics, through device technology, to innovative circuit design. The strength of this book lies in its holistic approach dealing with material trends, state-of-the-art of key devices, new examples of circuits and systems applications. This is the first of three books based on the Integrated Smart Sensors research project, which describe the development of innovative devices, circuits, and system-level enabling technologies. The aim of the project was to develop common platforms on which various devices and sensors can be loaded, and to create systems offering significant improvements in information processing speed, energy usage, and size. The book contains extensive reference lists and with over 200 figures introduces the reader to the general subject in a tutorial style, also addressing the state-of-the-art, allowing it to be used as a guide for starting researchers in these fields.







Battery Operated Devices and Systems


Book Description

Battery Operated Devices and Systems provides a comprehensive review of the essentials of batteries and battery applications as well as state-of-the-art technological developments. The book covers the most recent trends, especially for the ubiquitous lithium ion batteries. It lays particular emphasis on the power consumption of battery operated devices and systems and the implications for battery life and runtime. Battery management is also dealt with in detail, particularly as far as the charging methods are concerned, along with the criteria of battery choice. This book describes a variety of portable and industrial applications and the basic characteristics of all primary and secondary batteries used in these applications. Portable applications include mobile phones, notebook computers, cameras, camcorders, personal digital assistants, medical instruments, power tools, and portable GPS. Industrial applications range from aerospace and telecommunications to emergency systems, load levelling, energy storage, toll collection, different meters, data loggers, oil drilling, oceanography, and meteorology. The book also discusses wireless connectivity, i.e. Wi-Fi, Bluetooth and Zigbee, and concludes with some market considerations. Links to further reading are provided through the 275 references. This book will be a valuable information source for researchers interested in devices and systems drawing power from batteries. It will also appeal to graduates working in research institutions; universities and industries dealing with power sources and energy conversion; civil, electrical and transport engineers; and chemists. A comprehensive review of battery applications Includes 209 figures and 62 tables Describes state-of-the-art technological developments










Chemical Abstracts


Book Description




Wide Bandgap Semiconductor Power Devices


Book Description

Wide Bandgap Semiconductor Power Devices: Materials, Physics, Design and Applications provides readers with a single resource on why these devices are superior to existing silicon devices. The book lays the groundwork for an understanding of an array of applications and anticipated benefits in energy savings. Authored by the Founder of the Power Semiconductor Research Center at North Carolina State University (and creator of the IGBT device), Dr. B. Jayant Baliga is one of the highest regarded experts in the field. He thus leads this team who comprehensively review the materials, device physics, design considerations and relevant applications discussed. - Comprehensively covers power electronic devices, including materials (both gallium nitride and silicon carbide), physics, design considerations, and the most promising applications - Addresses the key challenges towards the realization of wide bandgap power electronic devices, including materials defects, performance and reliability - Provides the benefits of wide bandgap semiconductors, including opportunities for cost reduction and social impact




Advances in Electronics, Communication and Computing


Book Description

This book is a compilation of research work in the interdisciplinary areas of electronics, communication, and computing. This book is specifically targeted at students, research scholars and academicians. The book covers the different approaches and techniques for specific applications, such as particle-swarm optimization, Otsu’s function and harmony search optimization algorithm, triple gate silicon on insulator (SOI)MOSFET, micro-Raman and Fourier Transform Infrared Spectroscopy (FTIR) analysis, high-k dielectric gate oxide, spectrum sensing in cognitive radio, microstrip antenna, Ground-penetrating radar (GPR) with conducting surfaces, and digital image forgery detection. The contents of the book will be useful to academic and professional researchers alike.




Power Transistors


Book Description