To the Digital Age


Book Description

Bassett (history, North Carolina State U.) combines corporate and technological history in his examination of the development and propagation of the metal- oxide-semiconductor (MOS) transistor, the backbone of digital electronics. One of the primary questions the study addresses is how organizational leadership contributes to the ability to successfully adapt to technological change. The focus is on the operations of Fairchild Semiconductor, Intel, and IBM. Annotation (c)2003 Book News, Inc., Portland, OR (booknews.com).




MOS Integrated Circuit Design


Book Description

MOS Integral Circuit Design aims to help in the design of integrated circuits, especially large-scale ones, using MOS Technology through teaching of techniques, practical applications, and examples. The book covers topics such as design equation and process parameters; MOS static and dynamic circuits; logic design techniques, system partitioning, and layout techniques. Also featured are computer aids such as logic simulation and mask layout, as well as examples on simple MOS design. The text is recommended for electrical engineers who would like to know how to use MOS for integral circuit design.




MOS Switched-Capacitor and Continuous-Time Integrated Circuits and Systems


Book Description

The purpose of this book is to present analysis and design principles, procedures and techniques of analog integrated circuits which are to be implemented in MOS (metal oxide semiconductor) technology. MOS technology is becoming dominant in the realization of digital systems, and its use for analog circuits opens new pos sibilities for the design of complex mixed analog/digital VLSI (very large scale in tegration) chips. Although we are focusing attention in this book principally on circuits and systems which can be implemented in CMOS technology, many con siderations and structures are of a general nature and can be adapted to other promising and emerging technologies, namely GaAs (Gallium Arsenide) and BI MOS (bipolar MOS, i. e. circuits which combine both bipolar and CMOS devices) technology. Moreover, some of the structures and circuits described in this book can also be useful without integration. In this book we describe two large classes of analog integrated circuits: • switched capacitor (SC) networks, • continuous-time CMOS (unswitched) circuits. SC networks are sampled-data systems in which electric charges are transferred from one point to another at regular discrete intervals of time and thus the signal samples are stored and processed. Other circuits belonging to this class of sampled-data systems are charge transfer devices (CTD) and charge coupled dev ices (CCD). In contrast to SC circuits, continuous-time CMOS circuits operate continuously in time. They can be considered as subcircuits or building blocks (e. g.




The MOS System


Book Description

A detailed, up-to-date guide to modern MOS structures, describing key tools, cutting-edge models, novel phenomena and challenges for future development. Abstract concepts are supported by practical examples and presented alongside recent theoretical and experimental results. An ideal companion for researchers, graduate students and industrial development engineers.




MOS Interface Physics, Process and Characterization


Book Description

The electronic device based on Metal Oxide Semiconductor (MOS) structure is the most important component of a large-scale integrated circuit, and is therefore a fundamental building block of the information society. Indeed, high quality MOS structure is the key to achieving high performance devices and integrated circuits. Meanwhile, the control of interface physics, process and characterization methods determine the quality of MOS structure. This book tries to answer five key questions: Why are high-performance integrated circuits bonded together so closely with MOS structure? Which physical phenomena occur in MOS structure? How do these phenomena affect the performance of MOS structure? How can we observe and quantify these phenomena scientifically? How to control the above phenomena through process? Principles are explained based on common experimental phenomena, from sensibility to rationality, via abundant experimental examples focusing on MOS structure, including specific experimental steps with a strong level of operability. This book will be an essential reference for engineers in semiconductor related fields and academics and postgraduates within the field of microelectronics.




Charge-Based MOS Transistor Modeling


Book Description

Modern, large-scale analog integrated circuits (ICs) are essentially composed of metal-oxide semiconductor (MOS) transistors and their interconnections. As technology scales down to deep sub-micron dimensions and supply voltage decreases to reduce power consumption, these complex analog circuits are even more dependent on the exact behavior of each transistor. High-performance analog circuit design requires a very detailed model of the transistor, describing accurately its static and dynamic behaviors, its noise and matching limitations and its temperature variations. The charge-based EKV (Enz-Krummenacher-Vittoz) MOS transistor model for IC design has been developed to provide a clear understanding of the device properties, without the use of complicated equations. All the static, dynamic, noise, non-quasi-static models are completely described in terms of the inversion charge at the source and at the drain taking advantage of the symmetry of the device. Thanks to its hierarchical structure, the model offers several coherent description levels, from basic hand calculation equations to complete computer simulation model. It is also compact, with a minimum number of process-dependant device parameters. Written by its developers, this book provides a comprehensive treatment of the EKV charge-based model of the MOS transistor for the design and simulation of low-power analog and RF ICs. Clearly split into three parts, the authors systematically examine: the basic long-channel intrinsic charge-based model, including all the fundamental aspects of the EKV MOST model such as the basic large-signal static model, the noise model, and a discussion of temperature effects and matching properties; the extended charge-based model, presenting important information for understanding the operation of deep-submicron devices; the high-frequency model, setting out a complete MOS transistor model required for designing RF CMOS integrated circuits. Practising engineers and circuit designers in the semiconductor device and electronics systems industry will find this book a valuable guide to the modelling of MOS transistors for integrated circuits. It is also a useful reference for advanced students in electrical and computer engineering.




Low-Frequency Noise in Advanced MOS Devices


Book Description

This is an introduction to noise, describing fundamental noise sources and basic circuit analysis, discussing characterization of low-frequency noise and offering practical advice that bridges concepts of noise theory and modelling, characterization, CMOS technology and circuits. The text offers the latest research, reviewing the most recent publications and conference presentations. The book concludes with an introduction to noise in analog/RF circuits and describes how low-frequency noise can affect these circuits.




Advanced MOS Device Physics


Book Description

VLSI Electronics Microstructure Science, Volume 18: Advanced MOS Device Physics explores several device physics topics related to metal oxide semiconductor (MOS) technology. The emphasis is on physical description, modeling, and technological implications rather than on the formal aspects of device theory. Special attention is paid to the reliability physics of small-geometry MOSFETs. Comprised of eight chapters, this volume begins with a general picture of MOS technology development from the device and processing points of view. The critical issue of hot-carrier effects is discussed, along with the device engineering aspects of this problem; the emerging low-temperature MOS technology; and the problem of latchup in scaled MOS circuits. Several device models that are suitable for use in circuit simulators are also described. The last chapter examines novel electron transport effects observed in ultra-small MOS structures. This book should prove useful to semiconductor engineers involved in different aspects of MOS technology development, as well as for researchers in this field and students of the corresponding disciplines.







Advanced MOS Devices and their Circuit Applications


Book Description

This text comprehensively discusses the advanced MOS devices and their circuit applications with reliability concerns. Further, an energy-efficient Tunnel FET-based circuit application will be investigated in terms of the output voltage, power efficiency, energy consumption, and performances using the device circuit co-design approach. The book: • Discusses advanced MOS devices and their circuit design for energy- efficient systems on chips (SoCs). • Covers MOS devices, materials, and related semiconductor transistor technologies for the next-generation ultra-low-power applications. • Examines the use of field-effect transistors for biosensing circuit applications and covers reliability design considerations and compact modeling of advanced low-power MOS transistors. • Includes research problem statements with specifications and commercially available industry data in the appendix. • Presents Verilog-A model-based simulations for circuit analysis. The volume provides detailed discussions of DC and analog/RF characteristics, effects of trap-assisted tunneling (TAT) for reliability analysis, spacer-underlap engineering methodology, doping profile analysis, and work-function techniques. It further covers novel MOS devices including FinFET, Graphene field-effect transistor, Tunnel FETS, and Flash memory devices. It will serve as an ideal design book for senior undergraduate students, graduate students, and academic researchers in the fields including electrical engineering, electronics and communication engineering, computer engineering, materials science, nanoscience, and nanotechnology.