Force and Motion


Book Description

"A graphic nonfiction volume that introduces the properties of force and motion. Features include several photographic pages, a glossary, additional resource list, and an index"--




College Physics for AP® Courses


Book Description

"This introductory, algebra-based, two-semester college physics book is grounded with real-world examples, illustrations, and explanations to help students grasp key, fundamental physics concepts. ... This online, fully editable and customizable title includes learning objectives, concept questions, links to labs and simulations, and ample practice opportunities to solve traditional physics application problems."--Website of book.




Glencoe iScience: Motion, Forces, and Energy, Student Edition


Book Description

Motion, Forces, and Energy, as a part of the Glencoe Science 15-Book Series, provides students with accurate and comprehensive coverage of forces and Newton s laws. The strong content coverage integrates a wide range of hands-on experiences, critical-thinking opportunities, and real-world applications. The modular approach allows you to mix and match books to meet your curricula.




Motion


Book Description

Learn how things get moving and what makes them stop.




Investigating Forces and Motion


Book Description

Force and motion are all around us and help us move and do great things! Through a variety of vivid images and stunning facts, readers will explore how forces and motions work. The easy-to-read text and accessible glossary and index ensure that readers have the tools they need to understand such concepts as gravity, equilibrium, acceleration, deceleration, electromagnetic fields, pressure, kinetic energy, and inertia. To gain further insight into how gravity, forces, and motion works, a stimulating lab activity is featured!




Explore Forces and Motion!


Book Description

Everything moves! Kids run around the playground, cars drive on the road, and balls fly through the air. What causes all this motion? Physics! Forces and motion rule the way everything moves through space. In Explore Forces and Motion! With 25 Great Projects, readers ages 7 through 10 discover that the push and pull of every object on the planet and in space depends on how a force acts upon it. Things float because of a force called buoyancy, we stick to the ground because of a force called gravity, and we make footprints in sand because of a force called pressure. Physics becomes accessible and interactive through activities such as a experimenting with a water cup drop, building a bridge, and spotting magnetic field lines. Simple machines such as levers, pulleys, and wedges are used as vehicles for discovery and comprehension of the foundational concepts of physical science. Using a theme familiar to everyone—motion—this book captures the imagination and encourages young readers to push, pull, twist, turn, and spin their way to learning about forces and motion.




The Biggest Ideas in the Universe


Book Description

INSTANT NEW YORK TIMES BESTSELLER “Most appealing... technical accuracy and lightness of tone... Impeccable.”—Wall Street Journal “A porthole into another world.”—Scientific American “Brings science dissemination to a new level.”—Science The most trusted explainer of the most mind-boggling concepts pulls back the veil of mystery that has too long cloaked the most valuable building blocks of modern science. Sean Carroll, with his genius for making complex notions entertaining, presents in his uniquely lucid voice the fundamental ideas informing the modern physics of reality. Physics offers deep insights into the workings of the universe but those insights come in the form of equations that often look like gobbledygook. Sean Carroll shows that they are really like meaningful poems that can help us fly over sierras to discover a miraculous multidimensional landscape alive with radiant giants, warped space-time, and bewilderingly powerful forces. High school calculus is itself a centuries-old marvel as worthy of our gaze as the Mona Lisa. And it may come as a surprise the extent to which all our most cutting-edge ideas about black holes are built on the math calculus enables. No one else could so smoothly guide readers toward grasping the very equation Einstein used to describe his theory of general relativity. In the tradition of the legendary Richard Feynman lectures presented sixty years ago, this book is an inspiring, dazzling introduction to a way of seeing that will resonate across cultural and generational boundaries for many years to come.




Body Physics


Book Description

"Body Physics was designed to meet the objectives of a one-term high school or freshman level course in physical science, typically designed to provide non-science majors and undeclared students with exposure to the most basic principles in physics while fulfilling a science-with-lab core requirement. The content level is aimed at students taking their first college science course, whether or not they are planning to major in science. However, with minor supplementation by other resources, such as OpenStax College Physics, this textbook could easily be used as the primary resource in 200-level introductory courses. Chapters that may be more appropriate for physics courses than for general science courses are noted with an asterisk symbol (*). Of course this textbook could be used to supplement other primary resources in any physics course covering mechanics and thermodynamics"--Textbook Web page.




University Physics Volume 1 of 3 (1st Edition Textbook)


Book Description

Black & white print. University Physics is a three-volume collection that meets the scope and sequence requirements for two- and three-semester calculus-based physics courses. Volume 1 covers mechanics, sound, oscillations, and waves. Volume 2 covers thermodynamics, electricity, and magnetism. Volume 3 covers optics and modern physics. This textbook emphasizes connections between theory and application, making physics concepts interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. Frequent, strong examples focus on how to approach a problem, how to work with the equations, and how to check and generalize the result.