Moving average control chart under neutrosophic statistics


Book Description

Continuous monitoring and improving the production process is a crucial step for the entrepreneur to maintain its position in the market. A successful process monitoring scheme depends upon the specification of the quality being monitored. In this paper, the monitoring of temperature is addressed using the specification of moving average under uncertainty. We determined the coefficients of the proposed chart utilizing the Monte Carlo simulation for a different measure of indeterminacy. The efficiency of the proposed chart has been evaluated by determining the average run lengths using several shift values. A real example of weather-related situation is studied for the practical adoption of the given technique. A comparison study shows that the proposed chart outperforms the existing chart in monitoring temperature-related data.




A New X-Bar Control Chart for Using Neutrosophic ExponentiallyWeighted Moving Average


Book Description

The existing Shewhart X-bar control charts using the exponentially weighted moving average statistic are designed under the assumption that all observations are precise, determined, and known. In practice, it may be possible that the sample or the population observations are imprecise or fuzzy. In this paper, we present the designing of the X-bar control chart under the symmetry property of normal distribution using the neutrosophic exponentially weighted moving average statistics. We will first introduce the neutrosophic exponentially weighted moving average statistic, and then use it to design the X-bar control chart for monitoring the data under an uncertainty environment. We will determine the neutrosophic average run length using the neutrosophic Monte Carlo simulation. The eciency of the proposed plan will be compared with existing control charts.




Introduction to Neutrosophic Statistics


Book Description

Neutrosophic Statistics means statistical analysis of population or sample that has indeterminate (imprecise, ambiguous, vague, incomplete, unknown) data. For example, the population or sample size might not be exactly determinate because of some individuals that partially belong to the population or sample, and partially they do not belong, or individuals whose appurtenance is completely unknown. Also, there are population or sample individuals whose data could be indeterminate. In this book, we develop the 1995 notion of neutrosophic statistics. We present various practical examples. It is possible to define the neutrosophic statistics in many ways, because there are various types of indeterminacies, depending on the problem to solve.




Cognitive Intelligence with Neutrosophic Statistics in Bioinformatics


Book Description

Cognitive Intelligence with Neutrosophic Statistics in Bioinformatics investigates and presents the many applications that have arisen in the last ten years using neutrosophic statistics in bioinformatics, medicine, agriculture and cognitive science. This book will be very useful to the scientific community, appealing to audiences interested in fuzzy, vague concepts from which uncertain data are collected, including academic researchers, practicing engineers and graduate students. Neutrosophic statistics is a generalization of classical statistics. In classical statistics, the data is known, formed by crisp numbers. In comparison, data in neutrosophic statistics has some indeterminacy. This data may be ambiguous, vague, imprecise, incomplete, and even unknown. Neutrosophic statistics refers to a set of data, such that the data or a part of it are indeterminate in some degree, and to methods used to analyze the data. Introduces the field of neutrosophic statistics and how it can solve problems working with indeterminate (imprecise, ambiguous, vague, incomplete, unknown) data Presents various applications of neutrosophic statistics in the fields of bioinformatics, medicine, cognitive science and agriculture Provides practical examples and definitions of neutrosophic statistics in relation to the various types of indeterminacies




Attribute Control Chart Using the Repetitive Sampling under Neutrosophic System


Book Description

In this manuscript, an attribute control chart using the repetitive sampling under the neutrosophic statistics system is discussed. The necessary measures of the proposed control chart under the neutrosophic statistics system are given. The control chart coefficients of the proposed control chart are determined using an algorithm under neutrosophic statistics system. The efficiency of the proposed control chart in terms of neutrosophic average run length (NARL) is discussed over the existing control chart under neutrosophic statistics system. From the comparison studies, it is found that the proposed control chart under neutrosophic statistics system is more sensitive in detecting a shift in the process as compared to existing control chart under neutrosophic statistics system. An industrial application of the proposed control chart under neutrosophic statistics system is also given.




Monitoring the temperature through moving average control under uncertainty environment


Book Description

The existing moving average control charts can be only applied when all observations in the data are determined, precise, and certain. But, in practice, the data from the weather monitoring is not exact and express in the interval. In this situation, the available monitoring plans cannot be applied for the monitoring of weather data. A new moving average control chart for the normal distribution is offered under the neutrosophic statistics. The parameters of the offered chart are determined through simulation under neutrosophic statistics.




Neutrosophy


Book Description




Neutrosophic Sets and Systems, vol. 51/2022


Book Description

“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc. Neutrosophy is a new branch of philosophy that studies the origin, nature, and scope of neutralities, as well as their interactions with different ideational spectra. This theory considers every notion or idea together with its opposite or negation and with their spectrum of neutralities in between them (i.e. notions or ideas supporting neither nor ). The and ideas together are referred to as . Neutrosophy is a generalization of Hegel's dialectics (the last one is based on and only). According to this theory every idea tends to be neutralized and balanced by and ideas - as a state of equilibrium. In a classical way , , are disjoint two by two. But, since in many cases the borders between notions are vague, imprecise, Sorites, it is possible that , , (and of course) have common parts two by two, or even all three of them as well. Neutrosophic Set and Neutrosophic Logic are generalizations of the fuzzy set and respectively fuzzy logic (especially of intuitionistic fuzzy set and respectively intuitionistic fuzzy logic).




A new CUSUM control chart under uncertainty with applications in petroleum and meteorology


Book Description

This paper proposes a new cumulative sum (CUSUM) X chart under the assumption of uncertainty using the neutrosophic statistic (NS). The performance of the new chart is investigated in terms of the neutrosophic run length properties using the Monte Carlo simulations approach.




Advances in Condition Monitoring, Optimization and Control for Complex Industrial Processes


Book Description

The book documents 25 papers collected from the Special Issue “Advances in Condition Monitoring, Optimization and Control for Complex Industrial Processes”, highlighting recent research trends in complex industrial processes. The book aims to stimulate the research field and be of benefit to readers from both academic institutes and industrial sectors.