Moving Base Simulation Evaluation of Translational Rate Command Systems for Stovl Aircraft in Hover


Book Description

Using a generalized simulation model, a moving-base simulation of a lift-fan short takeoff/vertical landing fighter aircraft has been conducted on the Vertical Motion Simulator at Ames Research Center. Objectives of the experiment were to determine the influence of system bandwidth and phase delay on flying qualities for translational rate command and vertical velocity command systems. Assessments were made for precision hover control and for landings aboard an LPH type amphibious assault ship in the presence of winds and rough seas. Results obtained define the boundaries between satisfactory and adequate flying qualities for these design features for longitudinal and lateral translational rate command and for vertical velocity command. Franklin, James A. and Stortz, Michael W. Ames Research Center RTOP 505-68-33...










Dynamics, Control, and Flying Qualities of V/STOL Aircraft


Book Description

Annotation This text presents the principles of dynamics and control for vertical, short take-off landing (V/STOL) aircraft. It is the first book of its kind. It is intended for graduate students and professionals in aeronautics who have knowledge of linear systems analysis, aircraft static, dynamic stability, and control. The text begins with a discussion of V/STOL aircraft operations. Control strategies, equations of motion, longitudinal and lateral-directional flying qualities in both hover and forward flight, wind and turbulence responses, and control augmentation and cockpit displays are covered. Specific examples of the YAV-8B Harrier and XV-15 Tilt Rotor aircraft are used to illustrate actual V/STOL dynamic and control characteristics.




V/STOL Dynamics, Control, and Flying Qualities


Book Description

This publication presents materials that constituted the lectures presented by the author as part of Course AA 234 Dynamics, Control, and Flying Qualities of V/STOL Aircraft that was taught in the Department of Aeronautics and Astronautics at Stanford University. It covers representative operations of vertical and short takeoff and landing (V/STOL) aircraft, a discussion of the pilot's strategy in controlling these aircraft, the equations of motion pertinent to V/STOL tasks, and their application in the analysis of longitudinal and lateral-directional control in hover and forward flight. Following that development, which applies to the characteristics of the basic airframe and propulsion system, the text concludes with a discussion of the contributions of control augmentation in specific flight tasks and of the integration of modern electronic displays with these controls.




NASA Technical Paper


Book Description