Mrs. Perkins's Electric Quilt


Book Description

An incomparable collection of stimulating math puzzles from bestselling author Paul Nahin What does quilting have to do with electric circuit theory? The answer is just one of the fascinating ways that best-selling popular math writer Paul Nahin illustrates the deep interplay of math and physics in the world around us in his latest book of challenging mathematical puzzles, Mrs. Perkins's Electric Quilt. With his trademark combination of intriguing mathematical problems and the historical anecdotes surrounding them, Nahin invites readers on an exciting and informative exploration of some of the many ways math and physics combine to create something vastly more powerful, useful, and interesting than either is by itself. In a series of brief and largely self-contained chapters, Nahin discusses a wide range of topics in which math and physics are mutually dependent and mutually illuminating, from Newtonian gravity and Newton's laws of mechanics to ballistics, air drag, and electricity. The mathematical subjects range from algebra, trigonometry, geometry, and calculus to differential equations, Fourier series, and theoretical and Monte Carlo probability. Each chapter includes problems—some three dozen in all—that challenge readers to try their hand at applying what they have learned. Just as in his other books of mathematical puzzles, Nahin discusses the historical background of each problem, gives many examples, includes MATLAB codes, and provides complete and detailed solutions at the end. Mrs. Perkins's Electric Quilt will appeal to students interested in new math and physics applications, teachers looking for unusual examples to use in class—and anyone who enjoys popular math books.




In Praise of Simple Physics


Book Description

Fun puzzles that use physics to explore the wonders of everyday life Physics can explain many of the things that we commonly encounter. It can tell us why the night is dark, what causes the tides, and even how best to catch a baseball. With In Praise of Simple Physics, popular math and science writer Paul Nahin presents a plethora of situations that explore the science and math behind the wonders of everyday life. Roaming through a diverse range of puzzles, he illustrates how physics shows us ways to wring more energy from renewable sources, to measure the gravity in our car garages, to figure out which of three light switches in the basement controls the light bulb in the attic, and much, much more. How fast can you travel from London to Paris? How do scientists calculate the energy of an atomic bomb explosion? How do you kick a football so it stays in the air and goes a long way downfield? Nahin begins with simpler problems and progresses to more challenging questions, and his entertaining, accessible, and scientifically and mathematically informed explanations are all punctuated by his trademark humor. Readers are presumed to have some background in beginning differential and integral calculus. Whether you simply have a personal interest in physics' influence in the world or you're an engineering and science student who wants to gain more physics know-how, this book has an intriguing scenario for you. In Praise of Simple Physics proves that if we look carefully at the world around us, physics has answers for the most astonishing day-to-day occurrences.




Dr. Euler's Fabulous Formula


Book Description

In the mid-eighteenth century, Swiss-born mathematician Leonhard Euler developed a formula so innovative and complex that it continues to inspire research, discussion, and even the occasional limerick. Dr. Euler's Fabulous Formula shares the fascinating story of this groundbreaking formula—long regarded as the gold standard for mathematical beauty—and shows why it still lies at the heart of complex number theory. In some ways a sequel to Nahin's An Imaginary Tale, this book examines the many applications of complex numbers alongside intriguing stories from the history of mathematics. Dr. Euler's Fabulous Formula is accessible to any reader familiar with calculus and differential equations, and promises to inspire mathematicians for years to come.




Number-Crunching


Book Description

More stimulating mathematics puzzles from bestselling author Paul Nahin How do technicians repair broken communications cables at the bottom of the ocean without actually seeing them? What's the likelihood of plucking a needle out of a haystack the size of the Earth? And is it possible to use computers to create a universal library of everything ever written or every photo ever taken? These are just some of the intriguing questions that best-selling popular math writer Paul Nahin tackles in Number-Crunching. Through brilliant math ideas and entertaining stories, Nahin demonstrates how odd and unusual math problems can be solved by bringing together basic physics ideas and today's powerful computers. Some of the outcomes discussed are so counterintuitive they will leave readers astonished. Nahin looks at how the art of number-crunching has changed since the advent of computers, and how high-speed technology helps to solve fascinating conundrums such as the three-body, Monte Carlo, leapfrog, and gambler's ruin problems. Along the way, Nahin traverses topics that include algebra, trigonometry, geometry, calculus, number theory, differential equations, Fourier series, electronics, and computers in science fiction. He gives historical background for the problems presented, offers many examples and numerous challenges, supplies MATLAB codes for all the theories discussed, and includes detailed and complete solutions. Exploring the intimate relationship between mathematics, physics, and the tremendous power of modern computers, Number-Crunching will appeal to anyone interested in understanding how these three important fields join forces to solve today's thorniest puzzles.




Will You Be Alive 10 Years from Now?


Book Description

"What are the chances of a game-show contestant finding a chicken in a box? Is the Hanukkah dreidel a fair game? Will you be alive ten years from now? These are just some of the one-of-a-kind probability puzzles that acclaimed popular math writer Paul Nahin offers in this lively and informative book.Nahin brings probability to life with colorful and amusing historical anecdotes as well as an electrifying approach to solving puzzles that illustrates many of the techniques that mathematicians and scientists use to grapple with probability. He looks at classic puzzles from the past--from Galileo's dice-tossing problem to a disarming dice puzzle that would have astonished even Newton--and also includes a dozen challenge problems for you to tackle yourself, with complete solutions provided in the back of the book.Nahin then presents twenty-five unusual probability puzzlers that you aren't likely to find anywhere else, and which range in difficulty from ones that are easy but clever to others that are technically intricate. Each problem is accompanied by an entertaining discussion of its background and solution, and is backed up by theory and computer simulations whenever possible in order to show how theory and computer experimentation can often work together on probability questions. All the MATLAB Monte Carlo simulation codes needed to solve the problems computationally are included in the book. With his characteristic wit, audacity, and insight, Nahin demonstrates why seemingly simple probability problems can stump even the experts"--




Inside Interesting Integrals


Book Description

What’s the point of calculating definite integrals since you can’t possibly do them all? What makes doing the specific integrals in this book of value aren’t the specific answers we’ll obtain, but rather the methods we’ll use in obtaining those answers; methods you can use for evaluating the integrals you will encounter in the future. This book, now in its second edition, is written in a light-hearted manner for students who have completed the first year of college or high school AP calculus and have just a bit of exposure to the concept of a differential equation. Every result is fully derived. If you are fascinated by definite integrals, then this is a book for you. New material in the second edition includes 25 new challenge problems and solutions, 25 new worked examples, simplified derivations, and additional historical discussion.




Transients for Electrical Engineers


Book Description

This book offers a concise introduction to the analysis of electrical transients aimed at students who have completed introductory circuits and freshman calculus courses. While it is written under the assumption that these students are encountering transient electrical circuits for the first time, the mathematical and physical theory is not ‘watered-down.’ That is, the analysis of both lumped and continuous (transmission line) parameter circuits is performed with the use of differential equations (both ordinary and partial) in the time domain, and the Laplace transform. The transform is fully developed in the book for readers who are not assumed to have seen it before. The use of singular time functions (unit step and impulse) is addressed and illustrated through detailed examples. The appearance of paradoxical circuit situations, often ignored in many textbooks (because they are, perhaps, considered ‘difficult’ to explain) is fully embraced as an opportunity to challenge students. In addition, historical commentary is included throughout the book, to combat the misconception that the material in engineering textbooks was found engraved on Biblical stones, rather than painstakingly discovered by people of genius who often went down many wrong paths before finding the right one. MATLAB® is used throughout the book, with simple codes to quickly and easily generate transient response curves.




The Logician and the Engineer


Book Description

Third printing. First paperback printing. Original copyright date: 2013.




How to Fall Slower Than Gravity


Book Description

An engaging collection of intriguing problems that shows you how to think like a mathematical physicist Paul Nahin is a master at explaining odd phenomena through straightforward mathematics. In this collection of twenty-six intriguing problems, he explores how mathematical physicists think. Always entertaining, the problems range from ancient catapult conundrums to the puzzling physics of a very peculiar material called NASTYGLASS—and from dodging trucks to why raindrops fall slower than the rate of gravity. The questions raised may seem impossible to answer at first and may require an unexpected twist in reasoning, but sometimes their solutions are surprisingly simple. Nahin’s goal, however, is always to guide readers—who will need only to have studied advanced high school math and physics—in expanding their mathematical thinking to make sense of the curiosities of the physical world. The problems are in the first part of the book and the solutions are in the second, so that readers may challenge themselves to solve the questions on their own before looking at the explanations. The problems show how mathematics—including algebra, trigonometry, geometry, and calculus—can be united with physical laws to solve both real and theoretical problems. Historical anecdotes woven throughout the book bring alive the circumstances and people involved in some amazing discoveries and achievements. More than a puzzle book, this work will immerse you in the delights of scientific history while honing your math skills.




Textile Collections


Book Description

Collections of textiles—historic costume, quilts, needlework samplers, and the like—have benefited greatly from the digital turn in museum and archival work. Both institutional online repositories and collections-based social media sites have fostered unprecedented access to textile collections that have traditionally been marginalized in museums. How can curators, interpreters, and collections managers make best use of these new opportunities? To answer this question, the author worked with sites including the Great Lakes Quilt Center at the Michigan State University Museum, the Design Center at Philadelphia University, the International Quilt Study Center and Museum at the University of Nebraska-Lincoln, and the WGBH Boston Media Library and Archives, as well as user-curated social sites online such as Tumblr and Polyvore, to create four compelling case studies on the preservation, access, curation, and interpretation of textile objects. The book explores: The nature of digital material culture. The role of audience participation versus curatorial authority online. Audience-friendly collections metadata and tagging. Visual, rather than text-based, searching and cataloging. The legality of ownership and access of museum collections online. Gender equity in museums and archives. This book is essential reading for anyone who cares for, collects, exhibits, or interprets historic costume or textile collections, but its broad implications for the future of museum work make it relevant for anyone with an interest in museum work online. And because the focus of this volume is theory and praxis, rather than specific technologies that are likely to become obsolete, it will be staple on your bookshelf for years to come.