Much Ado about Microbunching


Book Description

The push to provide ever brighter coherent radiation sources has led to the creation of correspondingly bright electron beams. With billions of electrons packed into normalized emittances (phase space) below one micron, collective effects may dominate both the preservation and use of such ultra-bright beams. An important class of collective effects is due to density modulations within the bunch, or microbunching. Microbunching may be deleterious, as in the case of the Mi- crobunching Instability (MBI), or it may drive radiation sources of unprecedented intensity, as in the case of Free Electron Lasers (FELs). In this work we begin by describing models of microbunching due to inherent beam shot noise, which sparks both the MBI as well as SLAC's Linac Coherent Light Source, the world's first hard X-ray laser. We first use this model to propose a mechanism for reducing the inherent beam shot noise as well as for predicting MBI effects. We then describe experimental measurements of the resulting microbunching at LCLS, including optical radiation from the MBI, as well as the first gain length and harmonic measurements from a hard X-ray FEL. In the final chapters, we describe schemes that use external laser modulations to microbunch light sources of the future. In these sections we describe coherent light source schemes for both both linacs and storage rings.




Much Ado about Microbunching


Book Description

The push to provide ever brighter coherent radiation sources has led to the creation of correspondingly bright electron beams. With billions of electrons packed into normalized emittances (phase space) below one micron, collective effects may dominate both the preservation and use of such ultra-bright beams. An important class of collective effects is due to density modulations within the bunch, or microbunching. Microbunching may be deleterious, as in the case of the Mi- crobunching Instability (MBI), or it may drive radiation sources of unprecedented intensity, as in the case of Free Electron Lasers (FELs). In this work we begin by describing models of microbunching due to inherent beam shot noise, which sparks both the MBI as well as SLAC's Linac Coherent Light Source, the world's first hard X-ray laser. We first use this model to propose a mechanism for reducing the inherent beam shot noise as well as for predicting MBI effects. We then describe experimental measurements of the resulting microbunching at LCLS, including optical radiation from the MBI, as well as the first gain length and harmonic measurements from a hard X-ray FEL. In the final chapters, we describe schemes that use external laser modulations to microbunch light sources of the future. In these sections we describe coherent light source schemes for both both linacs and storage rings.




Much Ado about Microbunching


Book Description

The push to provide ever brighter coherent radiation sources has led to the creation of correspondingly bright electron beams. With billions of electrons packed into normalized emittances (phase space) below one micron, collective effects may dominate both the preservation and use of such ultra-bright beams. An important class of collective effects is due to density modulations within the bunch, or microbunching. Microbunching may be deleterious, as in the case of the Microbunching Instability (MBI), or it may drive radiation sources of unprecedented intensity, as in the case of Free Electron Lasers (FELs). In this work we begin by describing models of microbunching due to inherent beam shot noise, which sparks both the MBI as well as SLAC's Linac Coherent Light Source, the world's first hard X-ray laser. We first use this model to propose a mechanism for reducing the inherent beam shot noise as well as for predicting MBI effects. We then describe experimental measurements of the resulting microbunching at LCLS, including optical radiation from the MBI, as well as the first gain length and harmonic measurements from a hard X-ray FEL. In the final chapters, we describe schemes that use external laser modulations to microbunch light sources of the future. In these sections we describe coherent light source schemes for both both linacs and storage rings.




18th Advanced ICFA Beam Dynamics Workshop on Quantum Aspects of Beam Physics


Book Description

Of working group C. Introduction and summary of working group C: part I / J.S.T. Ng -- Contributed papers. Is there emmitted radiation in the Unruh effect? / B.L. Hu and A. Raval -- Fermilab A0 channeling program / R.A. Carrigan, Jr. [and others] -- Integral characteristics of bremsstrahlung and pair photoproduction in a medium / V.N. Baier and V.M. Katkov -- The Coulomb corrections to e+e- pair production in ultrarelativistic heavy-ion collisions / R.N. Lee -- Spin depolarization due to beam-beam interaction in linear colliders / K.A. Thompson -- Gravitational Čerenkov radiation and scalar stars / S. Capozziello, G. Lambiase and D.F. Torres -- D. Quantum methodologies in beam physics. Plenary papers. Supersymmetry and beam dynamics / J.D. Bjorken and P. Chen -- Landau damping in nonlinear Schrödinger equations / R. Fedele [and others] -- Summary of working group D. Quantum methodology in beam physics / A. Dragt and M. Pusterla -- Contributed papers. Controlled stochastic collective dynamics of particle beams in the stability regime / C. Petroni [and others] -- Quantum mechanical formalism of particle beam optics / S.A. Khan -- Localized coherent structures and patterns formation in collective models of beam motion / A. Fedorova and M. Zeitlin -- Quasiclassical calculations for Wigner functions via multiresolution / A. Fedorova and M. Zeitlin -- Single-particle quantum dynamics in a magnetic lattice / M. Venturini and R.D. Ruth -- Quantum-like approach to beam dynamics - application to the LHC and HIDIF projects / M. Pusterla -- Quantum mechanics of Dirac particle beam optics: single-particle theory / R. Jaganathan -- Quantum models in beam physics and signal analysis / M. Manko -- Radiative corrections in symmetrized classical electrodynamics / J.R. Van Meter [and others] -- Beyond Unruh effect: nonequilibrium quantum dynamics of moving charges / B.L. Hu and P.R. Johnson.




Sneaking a Look at God's Cards


Book Description

Quantum mechanics describes the behavior of subatomic particles. Since its inception, physicists and philosophers have struggled to work out the meaning of quantum mechanics. This book sets out what we know about the quantum world, how we came to this understanding, where we disagree, and where we are heading in our quest to comprehend it.




Direct and Inverse Problems in Wave Propagation and Applications


Book Description

This book is the third volume of three volume series recording the "Radon Special Semester 2011 on Multiscale Simulation & Analysis in Energy and the Environment" taking place in Linz, Austria, October 3-7, 2011. This book surveys recent developments in the analysis of wave propagation problems. The topics covered include aspects of the forward problem and problems in inverse problems, as well as applications in the earth sciences. Wave propagation problems are ubiquitous in environmental applications such as seismic analysis, acoustic and electromagnetic scattering. The design of efficient numerical methods for the forward problem, in which the scattered field is computed from known geometric configurations is very challenging due to the multiscale nature of the problems. Even more challenging are inverse problems where material parameters and configurations have to be determined from measurements in conjunction with the forward problem. This book contains review articles covering several state-of-the-art numerical methods for both forward and inverse problems. This collection of survey articles focusses on the efficient computation of wave propagation and scattering is a core problem in numerical mathematics, which is currently of great research interest and is central to many applications in energy and the environment. Two generic applications which resonate strongly with the central aims of the Radon Special Semester 2011 are forward wave propagation in heterogeneous media and seismic inversion for subsurface imaging. As an example of the first application, modelling of absorption and scattering of radiation by clouds, aerosol and precipitation is used as a tool for interpretation of (e.g.) solar, infrared and radar measurements, and as a component in larger weather/climate prediction models in numerical weather forecasting. As an example of the second application, inverse problems in wave propagation in heterogeneous media arise in the problem of imaging the subsurface below land or marine deposits. The book records the achievements of Workshop 3 "Wave Propagation and Scattering, Inverse Problems and Applications in Energy and the Environment". It brings together key numerical mathematicians whose interest is in the analysis and computation of wave propagation and scattering problems, and in inverse problems, together with practitioners from engineering and industry whose interest is in the applications of these core problems.




Unified Transform for Boundary Value Problems


Book Description

This book describes state-of-the-art advances and applications of the unified transform and its relation to the boundary element method. The authors present the solution of boundary value problems from several different perspectives, in particular the type of problems modeled by partial differential equations (PDEs). They discuss recent applications of the unified transform to the analysis and numerical modeling of boundary value problems for linear and integrable nonlinear PDEs and the closely related boundary element method, a well-established numerical approach for solving linear elliptic PDEs.? The text is divided into three parts. Part I contains new theoretical results on linear and nonlinear evolutionary and elliptic problems. New explicit solution representations for several classes of boundary value problems are constructed and rigorously analyzed. Part II is a detailed overview of variational formulations for elliptic problems. It places the unified transform approach in a classic context alongside the boundary element method and stresses its novelty. Part III presents recent numerical applications based on the boundary element method and on the unified transform.




Signal Processing of Power Quality Disturbances


Book Description

Bridging the gap between power quality and signal processing This innovative new text brings together two leading experts, one from signal processing and the other from power quality. Combining their fields of expertise, they set forth and investigate various types of power quality disturbances, how measurements of these disturbances are processed and interpreted, and, finally, the use and interpretation of power quality standards documents. As a practical aid to readers, the authors make a clear distinction between two types of power quality disturbances: * Variations: disturbances that are continuously present * Events: disturbances that occur occasionally A complete analysis and full set of tools are provided for each type of disturbance: * Detailed examination of the origin of the disturbance * Signal processing measurement techniques, including advanced techniques and those techniques set forth in standards documents * Interpretation and analysis of measurement data * Methods for further processing the features extracted from the signal processing into site and system indices The depth of coverage is outstanding: the authors present and analyze material that is not covered in the standards nor found in the scientific literature. This text is intended for two groups of readers: students and researchers in power engineering who need to use signal processing techniques for power system applications, and students and researchers in signal processing who need to perform power system disturbance analyses and diagnostics. It is also highly recommended for any engineer or utility professional involved in power quality monitoring.




Maxwell's Demon 2 Entropy, Classical and Quantum Information, Computing


Book Description

Over 130 years ago, James Clerk Maxwell introduced his hypothetical "demon" as a challenge to the scope of the second law of thermodynamics. Fascination with the demon persisted throughout the development of statistical and quantum physics, information theory, and computer science, and links have been established between Maxwell's demon and each of




The Maxwellians


Book Description

James Clerk Maxwell published the Treatise on Electricity and Magnetism in 1873. At his death, six years later, his theory of the electromagnetic field was neither well understood nor widely accepted. By the mid-1890s, however, it was regarded as one of the most fundamental and fruitful of all physical theories. Bruce J. Hunt examines the joint work of a group of young British physicists—G. F. FitzGerald, Oliver Heaviside, and Oliver Lodge—along with a key German contributor, Heinrich Hertz. It was these "Maxwellians" who transformed the fertile but half-finished ideas presented in the Treatise into the concise and powerful system now known as "Maxwell's theory."