An Introduction to MultiAgent Systems


Book Description

The study of multi-agent systems (MAS) focuses on systems in which many intelligent agents interact with each other. These agents are considered to be autonomous entities such as software programs or robots. Their interactions can either be cooperative (for example as in an ant colony) or selfish (as in a free market economy). This book assumes only basic knowledge of algorithms and discrete maths, both of which are taught as standard in the first or second year of computer science degree programmes. A basic knowledge of artificial intelligence would useful to help understand some of the issues, but is not essential. The book’s main aims are: To introduce the student to the concept of agents and multi-agent systems, and the main applications for which they are appropriate To introduce the main issues surrounding the design of intelligent agents To introduce the main issues surrounding the design of a multi-agent society To introduce a number of typical applications for agent technology After reading the book the student should understand: The notion of an agent, how agents are distinct from other software paradigms (e.g. objects) and the characteristics of applications that lend themselves to agent-oriented software The key issues associated with constructing agents capable of intelligent autonomous action and the main approaches taken to developing such agents The key issues in designing societies of agents that can effectively cooperate in order to solve problems, including an understanding of the key types of multi-agent interactions possible in such systems The main application areas of agent-based systems




Multiagent Systems


Book Description

This is the first comprehensive introduction to multiagent systems and contemporary distributed artificial intelligence that is suitable as a textbook.




An Introduction to MultiAgent Systems


Book Description

This book will introduce students to intelligent agents, explain what these agents are, how they are constructed and how they can be made to co-operate effectively with one another in large-scale systems.




Multi-Agent Oriented Programming


Book Description

The main concepts and techniques of multi-agent oriented programming, which supports the multi-agent systems paradigm at the programming level. A multi-agent system is an organized ensemble of autonomous, intelligent, goal-oriented entities called agents, communicating with each other and interacting within an environment. This book introduces the main concepts and techniques of multi-agent oriented programming, (MAOP) which supports the multi-agent systems paradigm at the programming level. MAOP provides a structured approach based on three integrated dimensions, which the book examines in detail: the agent dimension, used to design the individual (interacting) entities; the environment dimension, which allows the development of shared resources and connections to the real world; and the organization dimension, which structures the interactions among the autonomous agents and the shared environment.




Multi-Agent Systems


Book Description

Methodological Guidelines for Modeling and Developing MAS-Based Simulations The intersection of agents, modeling, simulation, and application domains has been the subject of active research for over two decades. Although agents and simulation have been used effectively in a variety of application domains, much of the supporting research remains scattered in the literature, too often leaving scientists to develop multi-agent system (MAS) models and simulations from scratch. Multi-Agent Systems: Simulation and Applications provides an overdue review of the wide ranging facets of MAS simulation, including methodological and application-oriented guidelines. This comprehensive resource reviews two decades of research in the intersection of MAS, simulation, and different application domains. It provides scientists and developers with disciplined engineering approaches to modeling and developing MAS-based simulations. After providing an overview of the field’s history and its basic principles, as well as cataloging the various simulation engines for MAS, the book devotes three sections to current and emerging approaches and applications. Simulation for MAS — explains simulation support for agent decision making, the use of simulation for the design of self-organizing systems, the role of software architecture in simulating MAS, and the use of simulation for studying learning and stigmergic interaction. MAS for Simulation — discusses an agent-based framework for symbiotic simulation, the use of country databases and expert systems for agent-based modeling of social systems, crowd-behavior modeling, agent-based modeling and simulation of adult stem cells, and agents for traffic simulation. Tools — presents a number of representative platforms and tools for MAS and simulation, including Jason, James II, SeSAm, and RoboCup Rescue. Complete with over 200 figures and formulas, this reference book provides the necessary overview of experiences with MAS simulation and the tools needed to exploit simulation in MAS for future research in a vast array of applications including home security, computational systems biology, and traffic management.




Multi-agent Systems


Book Description

In this book, Jacques Ferber has brought together all the recent developments in the field of multi-agent systems - an area that has seen increasing interest and major developments over the last few years. The author draws on work carried out in various disciplines, including information technology, sociology and cognitive psychology to provide a coherent and instructive picture of the current state-of-the-art. The book introduces and defines the fundamental concepts that need to be understood, clearly describes the work that has been done, and invites readers to reflect upon the possibilities of the future.




Adaptive Agents and Multi-Agent Systems


Book Description

Adaptive Agents and Multi-Agent Systems is an emerging and exciting interdisciplinary area of research and development involving artificial intelligence, computer science, software engineering, and developmental biology, as well as cognitive and social science. This book surveys the state of the art in this emerging field by drawing together thoroughly selected reviewed papers from two related workshops; as well as papers by leading researchers specifically solicited for this book. The articles are organized into topical sections on - learning, cooperation, and communication - emergence and evolution in multi-agent systems - theoretical foundations of adaptive agents




Self-organising Multi-agent Systems: Algorithmic Foundations Of Cyber-anarcho-socialism


Book Description

The paradigm of self-organisation is fundamental to theories of collective action in economic science and democratic governance in political science. Self-organisation in these social systems critically depends on voluntary compliance with conventional rules: that is, rules which are made up, mutually agreed, and modifiable 'on the fly'. How, then, can we use the self-organisation observed in such social systems as an inspiration for decentralised computer systems, which can face similar problems of coordination, cooperation and collaboration between autonomous peers?Self-Organising Multi-Agent Systems presents an innovative and systematic approach to transforming theories of economics and politics (and elements of philosophy, psychology, and jurisprudence) into an executable logical specification of conventional rules. It shows how sets of such rules, called institutions, provide an algorithmic basis for designing and implementing cyber-physical systems, enabling intelligent software processes (called agents) to manage themselves in the face of competition for scarce resources. It also provides a basis for implementing socio-technical systems with interacting human and computational intelligences in a way that is sustainable, fair and legitimate.This interdisciplinary book is essential reading for anyone interested in the 'planned emergence' of global properties, commonly-shared values or successful collective action, especially as a product of social construction, knowledge management and political arrangements. For those studying both computer science and social sciences, this book offers a radically new gateway to a transformative understanding of complex system development and social system modelling.Understanding how a computational representation of qualitative values like justice and democracy can lead to stability and legitimacy of socio-technical systems is among the most pressing software engineering challenges of modern times. This book can be read as an invitation to make the Digital Society better.Related Link(s)




Programming Multi-Agent Systems in AgentSpeak using Jason


Book Description

Jason is an Open Source interpreter for an extended version of AgentSpeak – a logic-based agent-oriented programming language – written in JavaTM. It enables users to build complex multi-agent systems that are capable of operating in environments previously considered too unpredictable for computers to handle. Jason is easily customisable and is suitable for the implementation of reactive planning systems according to the Belief-Desire-Intention (BDI) architecture. Programming Multi-Agent Systems in AgentSpeak using Jason provides a brief introduction to multi-agent systems and the BDI agent architecture on which AgentSpeak is based. The authors explain Jason’s AgentSpeak variant and provide a comprehensive, practical guide to using Jason to program multi-agent systems. Some of the examples include diagrams generated using an agent-oriented software engineering methodology particularly suited for implementation using BDI-based programming languages. The authors also give guidance on good programming style with AgentSpeak. Programming Multi-Agent Systems in AgentSpeak using Jason Describes and explains in detail the AgentSpeak extension interpreted by Jason and shows how to create multi-agent systems using the Jason platform. Reinforces learning with examples, problems, and illustrations. Includes two case studies which demonstrate the use of Jason in practice. Features an accompanying website that provides further learning resources including sample code, exercises, and slides This essential guide to AgentSpeak and Jason will be invaluable to senior undergraduate and postgraduate students studying multi-agent systems. The book will also be of interest to software engineers, designers, developers, and programmers interested in multi-agent systems.




Cooperative Control of Multi-Agent Systems


Book Description

Cooperative Control of Multi-Agent Systems extends optimal control and adaptive control design methods to multi-agent systems on communication graphs. It develops Riccati design techniques for general linear dynamics for cooperative state feedback design, cooperative observer design, and cooperative dynamic output feedback design. Both continuous-time and discrete-time dynamical multi-agent systems are treated. Optimal cooperative control is introduced and neural adaptive design techniques for multi-agent nonlinear systems with unknown dynamics, which are rarely treated in literature are developed. Results spanning systems with first-, second- and on up to general high-order nonlinear dynamics are presented. Each control methodology proposed is developed by rigorous proofs. All algorithms are justified by simulation examples. The text is self-contained and will serve as an excellent comprehensive source of information for researchers and graduate students working with multi-agent systems.