Multi-criteria Decision Making Methods with Bipolar Fuzzy Sets


Book Description

This monograph discusses the theoretical and practical development of multicriteria decision making (MCDM). The main purpose of MCDM is the construction of systematized strategies for the "optimisation" of feasible options, as well as the justification of why some alternatives can be declared "optimal". However, at time, we must make decisions in an uncertain environment and such inconvenience gives rise to a much more elaborate scenario. This book highlights models where this lack of certainty can be flexibly fitted in and goes on to explore valuable strategies for making decisions under a multiplicity of criteria. Methods discussed include bipolar fuzzy TOPSIS method, bipolar fuzzy ELECTRE-I method, bipolar fuzzy ELECTRE-II method, bipolar fuzzy VIKOR method, bipolar fuzzy PROMETHEE method, and two-tuple linguistic bipolar fuzzy Heronian mean operators. This book is a valuable resource for researchers, computer scientists, and social scientists alike.




Multi-Criteria Decision-Making Method Using Heronian Mean Operators under a Bipolar Neutrosophic Environment


Book Description

In real applications, most decisions are fuzzy decisions, and the decision results mainly depend on the choice of aggregation operators. In order to aggregate information more scientifically and reasonably, the Heronian mean operator was studied in this paper. Considering the advantages and limitations of the Heronian mean (HM) operator, four Heronian mean operators for bipolar neutrosophic number (BNN) are proposed: the BNN generalized weighted HM (BNNGWHM) operator, the BNN improved generalized weighted HM (BNNIGWHM) operator, the BNN generalized weighted geometry HM (BNNGWGHM) operator, and the BNN improved generalized weighted geometry HM (BNNIGWGHM) operator. Then, their propositions were examined. Furthermore, two multi-criteria decision methods based on the proposed BNNIGWHM and BNNIGWGHM operator are introduced under a BNN environment. Lastly, the effectiveness of the new methods was verified with an example.




Fuzzy Multi-criteria Decision-Making Using Neutrosophic Sets


Book Description

This book offers a comprehensive guide to the use of neutrosophic sets in multiple criteria decision making problems. It shows how neutrosophic sets, which have been developed as an extension of fuzzy and paraconsistent logic, can help in dealing with certain types of uncertainty that classical methods could not cope with. The chapters, written by well-known researchers, report on cutting-edge methodologies they have been developing and testing on a variety of engineering problems. The book is unique in its kind as it reports for the first time and in a comprehensive manner on the joint use of neutrosophic sets together with existing decision making methods to solve multi-criteria decision-making problems, as well as other engineering problems that are complex, hard to model and/or include incomplete and vague data. By providing new ideas, suggestions and directions for the solution of complex problems in engineering and decision making, it represents an excellent guide for researchers, lecturers and postgraduate students pursuing research on neutrosophic decision making, and more in general in the area of industrial and management engineering.




Multi-Criteria Decision-Making Method Using Heronian Mean Operators under a Bipolar Neutrosophic Environment


Book Description

In real applications, most decisions are fuzzy decisions, and the decision results mainly depend on the choice of aggregation operators. In order to aggregate information more scientifically and reasonably, the Heronian mean operator was studied in this paper.




Neutrosophic Multi-Criteria Decision Making


Book Description

This book is a printed edition of the Special Issue "Neutrosophic Multi-Criteria Decision Making" that was published in Axioms




Multiple Criteria Decision Making Methods with Multi-polar Fuzzy Information


Book Description

This book presents an extension of fuzzy set theory allowing for multi-polar information, discussing its impact on the theoretical and practical development of multi-criteria decision making. It reports on set of hybrid models developed by the authors, and show how they can be adapted, case by case, to the lack of certainty under a variety of criteria. Among them, hybrid models combining m-polar fuzzy sets with rough, soft and 2-tuple linguistic sets, and m-polar hesitant fuzzy sets and hesitant m-polar fuzzy are presented, together with some significant applications. In turn, outranking decision-making techniques such as m-polar fuzzy ELECTRE I, II, III and IV methods, as well as m-polar fuzzy PROMETHEE I and II methods, are developed. The efficiency of these decision-making procedures, as well as other possible extensions studied by the authors, is shown in some real-world applications. Overall, this book offers a guide on methodologies to deal with the multi-polarity and fuzziness of the real-world problems, simultaneously. By including algorithms and computer programming codes, it provides a practice-oriented reference guide to both researchers and professionals working at the interface between computational intelligence and decision making.







Novel multiple criteria decision making methods based on bipolar neutrosophic sets and bipolar neutrosophic graphs


Book Description

In this research article, we present certain notions of bipolar neutrosophic graphs. We study the dominating and independent sets of bipolar neutrosophic graphs. We describe novel multiple criteria decision making methods based on bipolar neutrosophic sets and bipolar neutrosophic graphs.




A Bipolar Fuzzy Extension of the MULTIMOORA Method


Book Description

The aim of this paper is to make a proposal for a new extension of the MULTIMOORA method extended to deal with bipolar fuzzy sets. Bipolar fuzzy sets are proposed as an extension of classical fuzzy sets in order to enable solving a particular class of decision-making problems. Unlike other extensions of the fuzzy set of theory, bipolar fuzzy sets introduce a positivemembership function, which denotes the satisfaction degree of the element x to the property corresponding to the bipolar-valued fuzzy set, and the negative membership function, which denotes the degree of the satisfaction of the element x to some implicit counter-property corresponding to the bipolar-valued fuzzy set. By using single-valued bipolar fuzzy numbers, the MULTIMOORA method can be more efficient for solving some specific problems whose solving requires assessment and prediction. The suitability of the proposed approach is presented through an example.




Multi-objective Group Decision Making


Book Description

This book proposes a set of models to describe fuzzy multi-objective decision making (MODM), fuzzy multi-criteria decision making (MCDM), fuzzy group decision making (GDM) and fuzzy multi-objective group decision-making problems, respectively. It also gives a set of related methods (including algorithms) to solve these problems. One distinguishing feature of this book is that it provides two decision support systems software for readers to apply these proposed methods. A set of real-world applications and some new directions in this area are then described to further instruct readers how to use these methods and software in their practice.