Modeling of Hydrodynamics and Sediment Transport in the Mekong Delta


Book Description

This research aims to investigate the prevailing sediment dynamics and the sediment budget in the Mekong Delta by using a process-based model. Understanding sediment dynamics for the Mekong Delta requires high resolution analysis and detailed data, which is a challenge for managers and scientists. This study introduces such an approach and focuses on modeling the entire system with a process-based approach with Delft3D-4 and Delft3D Flexible Mesh (DFM). The first model is used to explore sediment dynamics at the coastal zone. The latter model allows straightforward coupling of 1D and 2D grids, making it suitable for analyzing the complex river and canal network of the Mekong Delta. The validated model suggests that the Mekong Delta receives ~99 Mt/year sediment from the Mekong River. This is much lower than the common estimate of 160 Mt/year. Only about 23% of the modelled total sediment load at Kratie is exported to the sea. The remaining portion is trapped in the rivers and floodplains of the Mekong Delta. The results advance understanding of sediment dynamics and sediment budget in the Mekong Delta. As such the model is an efficient tool to support delta management and planning.




An Introduction to Multidimensional Flow Analysis of Rivers


Book Description

Introductory technical guidance for civil engineers interested in multidimensional flow analysis of rivers. Here is what is discussed: 1. INTRODUCTION 2. LIMITATIONS OF ONE-DIMENSIONAL ANALYSIS 3. EQUATIONS OF FLOW 4. SIGNIFICANCE OF TERMS 5. USE OF EQUATIONS OF FLOW 6. TWO-DIMENSIONAL FLOW CONDITIONS 7. AVAILABLE COMPUTER PROGRAMS 8. DATA REQUIREMENTS 9.DATA DEVELOPMENT AND MODEL CALIBRATION 10. EXAMPLE APPLICATIONS.




Coastal, Estuarial and Harbour Engineer's Reference Book


Book Description

A major new reference book bringing together wide-ranging expert guidance on coastal engineering, including harbours and estuaries. It covers both traditional engineering topics and the fast developing areas of mathematical modelling and computer simulation.




Modelling and Analysis of Fine Sediment Transport in Wave-Current Bottom Boundary Layer


Book Description

The evolution and utilization of estuarine and coastal regions are greatly restricted by sediment problems. This thesis aims to better understand fine sediment transport under combined action of waves and currents, especially in the wave-current bottom boundary layer (BBL). Field observations, experimental data analysis, theoretical analysis and numerical models are employed. Silt-dominated sediments are sensitive to flow dynamics and the suspended sediment concentration (SSC) increase rapidly under strong flow dynamics. This research unveils several fundamental aspects of silty sediment, i.e., the criterion of the incipient motion, the SSC profiles and their phase-averaged parameterization in wave-dominated conditions. An expression for sediment incipient motion is proposed for silt-sand sediment under combined wave and current conditions. A process based intra-wave 1DV model for flow-sediment dynamics near the bed is developed in combined wave-current conditions. The high concentration layer (HCL) was simulated and sensitivity analysis was carried out by the 1DV model on factors that impact the SSC in the HCL. Finally, based on the 1DV model, the formulations of the mean SSC profile of silt-sand sediments in wave conditions were proposed. The developed approaches are expected to be applied in engineering practice and further simulation.




Erosion and Sedimentation Manual


Book Description

NOTE: NO FURTHER DISCOUNT FOR THIS PRINT PRODUCT--OVERSTOCK SALE --Significantly reduced list price while supplies last The Erosion and Sedimentation Manual provides a comprehensive coverage of subjects in nine chapters (i.e., introduction, erosion and reservoir sedimentation, noncohesive sediment transport, cohesive sediment transport, sediment modeling for rivers and reservoirs, sustainable development and use of reservoirs, river process and restoration, dam decommissioning and sediment management, and reservoir surveys and data analysis). Each chapter is self-contained, with cross references of subjects that are discussed in different chapters of this manual. The manual also includes a list of commonly used notations used in the erosion and sedimentation literature, conversion factors between the Imperial and metric units, physical properties of water, and author and subject indexes for easy reference. Each chapter has a list of reference for readers who would like to seek out more detailed information on specific subjects. Audience The manual would be useful for researchers, university professors, graduate students, geologists, hydrographic survey analysts, municipal and state water research specialists, and engineers in solving erosion and sedimentation problems. Related products: Earth Science resources collection can be found here: https: //bookstore.gpo.gov/catalog/science-technology/earth-science







The Gironde Estuary


Book Description




Tidal Hydraulics


Book Description




3D Imaging—Multidimensional Signal Processing and Deep Learning


Book Description

This book presents high-quality research in the field of 3D imaging technology. The fourth edition of International Conference on 3D Imaging Technology (3DDIT-MSP&DL) continues the good traditions already established by the first three editions of the conference to provide a wide scientific forum for researchers, academia, and practitioners to exchange newest ideas and recent achievements in all aspects of image processing and analysis, together with their contemporary applications. The conference proceedings are published in two volumes. The main topics of the papers comprise famous trends as: 3D image representation, 3D image technology, 3D images and graphics, and computing and 3D information technology. In these proceedings, special attention is paid at the 3D tensor image representation, the 3D content generation technologies, big data analysis, and also deep learning, artificial intelligence, the 3D image analysis and video understanding, the 3D virtual and augmented reality, and many related areas. The first volume contains papers in 3D image processing, transforms, and technologies. The second volume is about computing and information technologies, computer images and graphics and related applications. The two volumes of the book cover a wide area of the aspects of the contemporary multidimensional imaging and the related future trends from data acquisition to real-world applications based on various techniques and theoretical approaches.




Introduction To Hydraulics Of Fine Sediment Transport, An (Second Edition)


Book Description

This book expounds the hydraulics of fine sediment which is almost ubiquitously found in coastal and estuarine waters, and in rivers, lakes, and reservoirs. Although the basic subject may be categorized as applied marine physics in shallow waters, several physicochemical and biological effects on particulate transport have been addressed.In this second edition most of the chapters have been substantially updated, rewritten, and expanded. Overall, a significant change has also been made throughout by replacing sediment concentration, a unit dependent quantity at the heart of numerous descriptions, measurements, and calculations, with the nondimensional sediment volume fraction. It marks a divergence in the manner in which fine sediment transport data and calculations are conventionally presented.The book is mainly written for civil engineering seniors and graduate students, to offer a comprehensive foundation in hydraulics of fine sediment. The book is also a useful reference for researchers interested in the effects of physical chemistry and biology on fine sediment transport in water and to an extent on coastal and estuarine morphodynamics, sediment transport, port and harbor engineering, and applied shallow watwer marine physics. The book is also recommended reading for those interested in understanding particle transport in water.Related Link(s)