Multi Objective Genetic Algorithm Approach to Reduce Sanitary Sewer Overflow


Book Description

Sanitary Sewer Overflow (SSO) is the discharge of wastewater from the collection network into the environment. The EPA estimates that up to 75,000 SSO events occur in the U.S. each year. SSOs can occur during dry or wet weather and are significant environmental and public health hazards. One of the main causes of SSOs is excessive rainfall derived inflow and infiltration into the network. This study applies a Multi-Objective Genetic Algorithm (MOGA) to identify near optimal solutions to minimize SSO occurrences and costs for sewer rehabilitation strategies. Two approaches are investigated: (1) enhancing the flow capacity of the collection and conveyance system by pipe diameter increase and (2) peak flow reduction using decentralized inline storage tanks. For the flow capacity enhancement strategy, the decision variables are the number of segments to be replaced, their locations and in how many commercial diameters the segments increases. For the peak flow reduction strategy, the decision variables include the number of tanks, their locations and volume. The approach is tested in a 5.9 square miles sewer network, located west of downtown San Antonio, Texas. The MOGA approach characterizes the trade-off between SSO reduction and cost, and provides stakeholders a better understanding of the system and flexibility in the decision making process to eliminate SSOs.




Sewer Systems Management


Book Description

Improper wastewater management could result in significant damage to the treatment plants and the final recipient aquatic ecosystem. In the past, wastewater management did not get much attention from different stakeholders. However, recently a paradigm shift of wastewater and storm water management is evolving from a simple sanitary and flood control, respectively, to a whole environmental protection function. A very important aspect of the sewer systems management policy is to detect and eliminate an illicit intrusion. This PhD research is consisting of two main pillars. In the first pillar, the issues regarding the identification of an illicit intrusion in a sewer system have been addressed, proposing a source identification (SI) methodology. In the second pillar, different innovative methodologies have been proposed to find the optimal placement of a limited number of sensors in the sewer system. In the thesis, the SI is solved through a simulation-optimization model, combining the hydraulic and quality simulation tool Storm Water Management Model (SWMM) with a genetic algorithm code (GALib) as an optimizer. It requires online measurements from some sensors placed on the network. The SWMM does not have the programmer's toolkit. To integrate the SWMM simulator with the proposed automated SI methodology, an ad-hoc toolkit has been developed. A pre-screening procedure, based on the pollution matrix concept and considering the topology of sewers, has been implemented to reduce the computational effort. The SI methodology has been tested on two different networks. One is a literature network taken from the SWMM example manual while the other is one sub-catchment of the real sewer network of Massa Lubrense, a town located near Naples, Italy. The results show that the pre-screening procedure reduces the computational effort significantly, and it has a crucial role in large systems. In investigating the performances of the SI methodology, its sensitivity respect to the genetic algorithm parameters has been verified. Moreover, the influence of the uncertainty of the inflows values and the measurement errors on the results have been investigated. Another core problem associated with the water quality monitoring of sewers is represented by the optimal placement of a limited number of sensors for the early detection of an illicit source. In the thesis, the sensor location is expressed as a single or multi-objective optimization problem and the SWMM is used to extract the water quality data. Different formulations have been proposed and tested. First, an Information Theory (IT) based multi-objective optimization methodology is presented. The IT approach considers two objectives: the Joint entropy, the information content of a set of sensors, which is kept as high as possible; the Total correlation, a measure of redundancy, which is kept as low as possible. In the second multi-objective approach Detection time, to be minimized, and Reliability, to be maximized, are considered. In both cases, the multi-objective problems are solved using the Non-Dominating Sorting Genetic Algorithm-II (NSGA-II). As a third alternative, a single objective Greedy based optimization tool has been tested. The previously considered objectives are also used with different combinations. The Massa Lubrense sewer network is used to test the performances of various proposed procedures. A normalized comparison among all approaches shows that the Greedy based approach could be a handy alternative for optimizing the sensor locations in sewer systems.




Life-Cycle of Structures and Infrastructure Systems


Book Description

Life-Cycle of Structures and Infrastructure Systems contains the lectures and papers presented at IALCCE 2023- The Eighth International Symposium on Life-Cycle Civil Engineering, held at Politecnico di Milano, Milan, Italy, 2-6 July, 2023. This book contains the full papers of 514 contributions presented at IALCCE 2023, including the Fazlur R. Khan Plenary Lecture, nine Keynote Lectures, and 504 technical papers from 45 countries. The papers cover recent advances and cutting-edge research in the field of life-cycle civil engineering, including emerging concepts and innovative applications related to life-cycle design, assessment, inspection, monitoring, repair, maintenance, rehabilitation, and management of structures and infrastructure systems under uncertainty. Major topics covered include life-cycle safety, reliability, risk, resilience and sustainability, life-cycle damaging processes, life-cycle design and assessment, life-cycle inspection and monitoring, life-cycle maintenance and management, life-cycle performance of special structures, life-cycle cost of structures and infrastructure systems, and life-cycle-oriented computational tools, among others. This Open Access Book provides both an up-to-date overview of the field of life-cycle civil engineering and significant contributions to the process of making more rational decisions to mitigate the life-cycle risk and improve the life-cycle reliability, resilience, and sustainability of structures and infrastructure systems exposed to multiple natural and human-made hazards in a changing climate. It will serve as a valuable reference to all concerned with life-cycle of civil engineering systems, including students, researchers, practicioners, consultants, contractors, decision makers, and representatives of managing bodies and public authorities from all branches of civil engineering.




The Internet of Things for Smart Urban Ecosystems


Book Description

The main objective of this book is to provide a multidisciplinary overview of methodological approaches, architectures, platforms, and algorithms for the realization of an Internet of Things (IoT)-based Smart Urban Ecosystem (SUE). Moreover, the book details a set of real-world applications and case studies related to specific smart infrastructures and smart cities, including structural health monitoring, smart urban drainage networks, smart grids, power efficiency, healthcare, city security, and emergency management. A Smart Urban Ecosystem (SUE) is a people-centric system of systems that involves smart city environments, applications, and infrastructures. SUEs require the close integration of cyber and physical components for monitoring, understanding and controlling the urban environment. In this context, the Internet of Things (IoT) offers a valuable enabling technology, as it bridges the gap between physical things and software components, and empowers cooperation between distributed, pervasive, and heterogeneous entities.







Urban Drainage Modeling


Book Description

This collection contains 91 papers presented at a specialty symposium on urban drainage modeling at the World Water and Environmental Resources Congress, held in Orlando, Florida, May 20-24, 2001.







Prevention and Control of Sewer System Overflows, 3e - MOP FD-17


Book Description

The Latest Sewer System Overflow Prevention Methods Fully revised throughout, this Water Environment Federation resource provides up-to-date information necessary to help managers and engineers understand and analyze an overflow problem and offers guidance on finding the most efficient, feasible, and cost-effective strategies to reduce or eliminate such overflows. This authoritative volume also serves as a planning guide for developing long-term control plans for combined sewer overflows (CSOs) and sanitary sewer overflows (SSOs). Prevention and Control of Sewer System Overflows, Third Edition, covers: Definitions and causes of overflows Regulatory guidelines Information management System characterization System maintenance and management Overflow mitigation technologies Overflow mitigation plan development and implementation







Urban Drainage


Book Description

Urban Drainage has been thoroughly revised and updated to reflect changes in the practice and priorities of urban drainage. New and expanded coverage includes: Sewer flooding The impact of climate change Flooding models The move towards sustainability Providing a descriptive overview of the issues involved as well as the engineering principles and analysis, it draws on real-world examples as well as models to support and demonstrate the key issues facing engineers dealing with drainage issues. It also deals with both the design of new drainage systems and the analysis and upgrading of existing infrastructure. This is a unique and essential textbook for students of water, environmental, and public health engineering as well as a valuable resource for practising engineers.