Multi-Robot Systems: From Swarms to Intelligent Automata


Book Description

In March 2002, the Naval Research Laboratory brought together leading researchers and government sponsors for a three-day workshop in Washington, D.C. on Multi-Robot Systems. The workshop began with presentations by various government program managers describing application areas and programs with an interest in multi robot systems. Government representatives were on hand from the Office of Naval Research, the Air Force, the Army Research Lab, the National Aeronau tics and Space Administration, and the Defense Advanced Research Projects Agency. Top researchers then presented their current activities in the areas of multi robot systems and human-robot interaction. The first two days of the workshop of1ocalizatio~. concentrated on multi-robot control issues, including the topics mapping, and navigation; distributed surveillance; manipulation; coordination and formations; and sensors and hardware. The third day was focused on hu man interactions with multi-robot teams. All presentations were given in a single-track workshop format. This proceedings documents the work presented by these researchers at the workshop. The invited presentations were followed by panel discussions, in which all participants interacted to highlight the challenges of this field and to develop possible solutions. In addition to the invited research talks, students were given an opportunity to present their work at poster sessions.




Multi-Robot Systems: From Swarms to Intelligent Automata, Volume II


Book Description

This Proceedings Volume documents recent cutting-edge developments in multi-robot systems research and is the result of the Second International Workshop on Multi-Robot Systems that was held in March 2003 at the Naval Research Laboratory in Washington, D.C. This Workshop brought together top researchers working in areas relevant to designing teams of autonomous vehicles, including robots and unmanned ground, air, surface, and undersea vehicles. The workshop focused on the challenging issues of team architectures, vehicle learning and adaptation, heterogeneous group control and cooperation, task selection, dynamic autonomy, mixed initiative, and human and robot team interaction. A broad range of applications of this technology are presented in this volume, including UCAVS (Unmanned Combat Air Vehicles), micro-air vehicles, UUVs (Unmanned Underwater Vehicles), UGVs (Unmanned Ground Vehicles), planetary exploration, assembly in space, clean-up, and urban search and rescue. This Proceedings Volume represents the contributions of the top researchers in this field and serves as a valuable tool for professionals in this interdisciplinary field.




Multi-Robot Systems. From Swarms to Intelligent Automata, Volume III


Book Description

This proceedings volume documents recent cutting-edge developments in multi-robot systems research. This volume is the result of the Third International workshop on Multi-Robot Systems that was held in March 2005 at the Naval Research Laboratory in Washington, D.C. This workshop brought together top researchers working in areas relevant to designing teams of autonomous vehicles, including robots and unmanned ground, air, surface, and undersea vehicles. The workshop focused on the challenging issues of team architectures, vehicle learning and adaptation, heterogeneous group control and cooperation, task selection, dynamic autonomy, mixed initiative, and human and robot team interaction. A broad range of applications of this technology are presented in this volume, including UCAVS (Unmanned Combat Air Vehicles), micro-air vehicles, UUVs (Unmanned Underwater Vehicles), UGVs (Unmanned Ground vehicles), planetary exploration, assembly in space, clean-up, and urban search and rescue. This proceedings volume represents the contributions of the top researchers in this field and serves as a valuable tool for professionals in this interdisciplinary field.




Multi-Robot Systems: From Swarms to Intelligent Automata


Book Description

In March 2002, the Naval Research Laboratory brought together leading researchers and government sponsors for a three-day workshop in Washington, D.C. on Multi-Robot Systems. The workshop began with presentations by various government program managers describing application areas and programs with an interest in multi robot systems. Government representatives were on hand from the Office of Naval Research, the Air Force, the Army Research Lab, the National Aeronau tics and Space Administration, and the Defense Advanced Research Projects Agency. Top researchers then presented their current activities in the areas of multi robot systems and human-robot interaction. The first two days of the workshop of1ocalizatio~. concentrated on multi-robot control issues, including the topics mapping, and navigation; distributed surveillance; manipulation; coordination and formations; and sensors and hardware. The third day was focused on hu man interactions with multi-robot teams. All presentations were given in a single-track workshop format. This proceedings documents the work presented by these researchers at the workshop. The invited presentations were followed by panel discussions, in which all participants interacted to highlight the challenges of this field and to develop possible solutions. In addition to the invited research talks, students were given an opportunity to present their work at poster sessions.




Multi-robot Systems


Book Description







Multi-Robot Systems


Book Description

This book is a collection of 29 excellent works and comprised of three sections: task oriented approach, bio inspired approach, and modeling/design. In the first section, applications on formation, localization/mapping, and planning are introduced. The second section is on behavior-based approach by means of artificial intelligence techniques. The last section includes research articles on development of architectures and control systems.




Multi-Robot Systems: From Swarms to Intelligent Automata


Book Description

This Proceedings Volume documents recent cutting-edge developments in multi-robot systems research and is the result of the Second International Workshop on Multi-Robot Systems that was held in March 2003 at the Naval Research Laboratory in Washington, D.C. This Workshop brought together top researchers working in areas relevant to designing teams of autonomous vehicles, including robots and unmanned ground, air, surface, and undersea vehicles. The workshop focused on the challenging issues of team architectures, vehicle learning and adaptation, heterogeneous group control and cooperation, task selection, dynamic autonomy, mixed initiative, and human and robot team interaction. A broad range of applications of this technology are presented in this volume, including UCAVS (Unmanned Combat Air Vehicles), micro-air vehicles, UUVs (Unmanned Underwater Vehicles), UGVs (Unmanned Ground Vehicles), planetary exploration, assembly in space, clean-up, and urban search and rescue. This Proceedings Volume represents the contributions of the top researchers in this field and serves as a valuable tool for professionals in this interdisciplinary field.




Multi-Robot Systems


Book Description

Robotics is an important part of modern engineering involving electricity and electronics, computers, mathematics, and mechanism design. In recent years, in addition to serial robots, multi-robot systems have begun to attract the attention of students, academics, and industry workers. This interest has directly impacted the development of novel theoretical research areas and products. This book explores new developments in multi-robot systems, such as trajectory planning, control algorithms, and programming.




Distributed Autonomous Robotic Systems


Book Description

Distributed robotics is an interdisciplinary and rapidly growing area, combining research in computer science, communication and control systems, and electrical and mechanical engineering. Distributed robotic systems can autonomously solve complex problems while operating in highly unstructured real-world environments. They are expected to play a major role in addressing future societal needs, for example, by improving environmental impact assessment, food supply, transportation, manufacturing, security, and emergency and rescue services. The goal of the International Symposium on Distributed Autonomous Robotic Systems (DARS) is to provide a forum for scientific advances in the theory and practice of distributed autonomous robotic systems. This volume of proceedings include 47 original contributions presented at the 13th International Symposium on Distributed Autonomous Robotic Systems (DARS 2016), which was held at the Natural History Museum in London, UK, from November 7th to 9th, 2016. The selected papers in this volume are authored by leading researchers from around the world, thereby providing a broad coverage and perspective of the state-of-the-art technologies, algorithms, system architectures, and applications in distributed robotic systems. The book is organized into seven parts, representative of critical long-term and emerging research thrusts in the multi-robot community: Distributed Coverage and Exploration; Multi-Robot Control; Multi-Robot Estimation; Multi-Robot Planning; Modular Robots and Smart Materials; Swarm Robotics; and Multi-Robot Systems in Applications.