Multi-scale Modelling of Compressive Behaviour of Materials with Pronounced Internal Microstructure


Book Description

All composite constituents are modelled as linear-elastic material, where both isotropic and anisotropic materials are considered depending on the length-scale. It is assumed that the moment of stability loss in the microstructure of materials is treated as the onset of the fracture process. Besides that, the critical strain that corresponds to loss of stability in the microstructure of the composite, either surface or internal instability, must be smaller than the critical strain that corresponds to loss of stability of the entire composite. This project involves parameterised variables, such as the crack size, the crack spacing, the layer volume fraction and the fibre volume fraction. At each length-scale two types of cracks are analysed, namely, cracks with stress-free crack faces and cracks with frictionless Hertzian contact of the crack faces. A number of finite-element models for each length-scale are developed, and are validated analytically and numerically. The models' ability to simulate practical composite structures to a useful degree of accuracy with suitable material properties is discussed. A number of parameters, which quantifies the interfacial crack interaction and crack faces contact interaction phenomena, are introduced and discussed. Qualitative discussion on the crack faces contact zones, post-critical behaviour of composites and crack propagation are presented and discussed. Finally, the subject areas for the future work are outlined.




Crystal Plasticity Finite Element Methods


Book Description

Written by the leading experts in computational materials science, this handy reference concisely reviews the most important aspects of plasticity modeling: constitutive laws, phase transformations, texture methods, continuum approaches and damage mechanisms. As a result, it provides the knowledge needed to avoid failures in critical systems udner mechanical load. With its various application examples to micro- and macrostructure mechanics, this is an invaluable resource for mechanical engineers as well as for researchers wanting to improve on this method and extend its outreach.




Continuum Micromechanics


Book Description

This book presents the most recent progress of fundamental nature made in the new developed field of micromechanics: transformation field analysis, variational bounds for nonlinear composites, higher-order gradients in micromechanical damage models, dynamics of composites, pattern based variational bounds.




Bioinspired Structures and Design


Book Description

Master simple to advanced biomaterials and structures with this essential text. Featuring topics ranging from bionanoengineered materials to bio-inspired structures for spacecraft and bio-inspired robots, and covering issues such as motility, sensing, control and morphology, this highly illustrated text walks the reader through key scientific and practical engineering principles, discussing properties, applications and design. Presenting case studies for the design of materials and structures at the nano, micro, meso and macro-scales, and written by some of the leading experts on the subject, this is the ideal introduction to this emerging field for students in engineering and science as well as researchers.




The Anatomy of Bamboo Culms


Book Description

Given its unrivalled position in terms of diversity, distribution and uses, coupled with the vital role it plays in the rural economies of several countries around the world, bamboo has emerged in recent years as potentially the most important non-wood forest resource to replace wood in construction and other uses. Concomitantly, the interest being shown in this invaluable natural resource since the 1980s has resulted in the accumulation of a considerable body of information through research on various aspects of bamboos, including the anatomy of the bamboo culm. There is, however, no comprehensive publication available on the anatomy of bamboo culm, with the available literature being fragmented, scattered and inadequate. This landmark monograph by renowned wood biologist, forestry expert and bamboo specialist, Professor Walter Liese, whose innovative work on the study of anatomical structure using advanced microscopy and other techniques has won him wide international acclaim, fulfils the need for a comprehensive overview of current knowledge on this subject. It is the first attempt to synthesize information from studies on this subject, many of which have been contributed by Professor Liese, spread over the past four decades. By identifying gaps in the current anatomical knowledge base of bamboo culm, it is expected to stimulate further research and to act as a prime mover for knowledge generation in the key areas of bamboo anatomy, growth and taxonomy.




Mechanical Behaviour of Engineering Materials


Book Description

How do engineering materials deform when bearing mechanical loads? To answer this crucial question, the book bridges the gap between continuum mechanics and materials science. The different kinds of material deformation are explained in detail. The book also discusses the physical processes occurring during the deformation of all classes of engineering materials and shows how these materials can be strengthened to meet the design requirements. It provides the knowledge needed in selecting the appropriate engineering material for a certain design problem. This book is both a valuable textbook and a useful reference for graduate students and practising engineers.




Heterostructured Materials


Book Description

Heterostructured (HS) materials represent an emerging class of materials that are expected to become a major research field for the communities of materials, mechanics, and physics in the next couple of decades. One of the biggest advantages of HS materials is that they can be produced by large-scale industrial facilities and technologies and therefore can be commercialized without the scaling up and high-cost barriers that are often encountered by other advanced materials. This book collects recent papers on the progress in the field of HS materials, especially their fundamental physics. The papers are arranged in a sequence of chapters that will help new researchers entering the field to have a quick and comprehensive understanding of HS materials, including the fundamentals and recent progress in their processing, characterization, and properties.




Continuum Scale Simulation of Engineering Materials


Book Description

This book fills a gap by presenting our current knowledge and understanding of continuum-based concepts behind computational methods used for microstructure and process simulation of engineering materials above the atomic scale. The volume provides an excellent overview on the different methods, comparing the different methods in terms of their respective particular weaknesses and advantages. This trains readers to identify appropriate approaches to the new challenges that emerge every day in this exciting domain. Divided into three main parts, the first is a basic overview covering fundamental key methods in the field of continuum scale materials simulation. The second one then goes on to look at applications of these methods to the prediction of microstructures, dealing with explicit simulation examples, while the third part discusses example applications in the field of process simulation. By presenting a spectrum of different computational approaches to materials, the book aims to initiate the development of corresponding virtual laboratories in the industry in which these methods are exploited. As such, it addresses graduates and undergraduates, lecturers, materials scientists and engineers, physicists, biologists, chemists, mathematicians, and mechanical engineers.




Software for Exascale Computing - SPPEXA 2016-2019


Book Description

This open access book summarizes the research done and results obtained in the second funding phase of the Priority Program 1648 "Software for Exascale Computing" (SPPEXA) of the German Research Foundation (DFG) presented at the SPPEXA Symposium in Dresden during October 21-23, 2019. In that respect, it both represents a continuation of Vol. 113 in Springer’s series Lecture Notes in Computational Science and Engineering, the corresponding report of SPPEXA’s first funding phase, and provides an overview of SPPEXA’s contributions towards exascale computing in today's sumpercomputer technology. The individual chapters address one or more of the research directions (1) computational algorithms, (2) system software, (3) application software, (4) data management and exploration, (5) programming, and (6) software tools. The book has an interdisciplinary appeal: scholars from computational sub-fields in computer science, mathematics, physics, or engineering will find it of particular interest.




Compressive Strength of Concrete


Book Description

Concrete made using mineral cements, the raw materials which on earth are practically endless, is known as one of the oldest building materials and during the last decades of the twentieth century has become a dominant building material for general use. At the same time, the requirements of the quality of concrete and its performance properties, in particular compressive strength, durability, economical efficiency, and low negative impact of its manufacture on the environment have not yet been completely met. Bearing these requirements in mind, researchers and engineers worldwide are working on how to satisfy these requirements. This book has been written by researchers and experts in the field and provides the state of the art on recent progress achieved on the properties of concrete, including concrete in which industrial by-products are utilized. The book is dedicated to graduate students, researchers, and practicing engineers in related fields.