Multiple-Valued Computing in Quantum Molecular Biology


Book Description

This book mainly focuses on the design methodologies of various quantum circuits, DNA circuits, DNA-quantum circuits, and quantum-DNA circuits. In this text, the author has compiled various design aspects of multiple-valued logic DNA-quantum and quantum-DNA sequential circuits, memory devices, programmable logic devices, and nanoprocessors. Multiple-Valued Computing in Quantum Molecular Biology: Sequential Circuits, Memory Devices, Programmable Logic Devices, and Nanoprocessors is Volume 2 of a two-volume set, and consists of four parts. This book presents various design aspects of multiple-valued logic DNA-quantum and quantum-DNA sequential circuits, memory devices, programmable logic devices, and nanoprocessors. Part I discusses multiple-valued quantum and DNA sequential circuits such as D flip-flop, SR latch, SR flip-flop, JK flip-flop, T flip-flop, shift register, ripple counter, and synchronous counter, which are described, respectively, with the applications and working procedures. After that, multiple-valued quantum-DNA and DNA-quantum sequential circuits such as D flip-flop, SR flip-flop, JK flip-flop, T flip-flop, shift register, ripple counter and synchronous counter circuits are explained with working procedures and architecture. Part II discusses the architecture and design procedure of memory devices such as random access memory (RAM), read-only memory (ROM), programmable read-only memory (PROM), and cache memory, which are sequentially described in multiple-valued quantum, DNA, quantum-DNA, and DNA-quantum computing. In Part III, the author examines the architectures and working principles of programmable logic devices such as programmable logic array (PLA), programmable array logic (PAL), field programmable gate array (FPGA), and complex programmable logic device (CPLD) in multiple-valued quantum, DNA, quantum-DNA, and DNA-quantum computing. Multiple-valued quantum, DNA, quantum-DNA, and DNA-quantum nanoprocessors are designed with algorithms in Part IV. Furthermore, the basic components of ternary nanoprocessors such as T-RAM, ternary instruction register, ternary incrementor circuit, ternary decoder, ternary multiplexer, ternary accumulator in quantum, DNA, quantum-DNA, and DNA-quantum computing are also explained in detail. This book will be of great help to researchers and students in quantum computing, DNA computing, quantum-DNA computing, and DNA-quantum computing.




Multivalued Maps And Differential Inclusions: Elements Of Theory And Applications


Book Description

The theory of multivalued maps and the theory of differential inclusions are closely connected and intensively developing branches of contemporary mathematics. They have effective and interesting applications in control theory, optimization, calculus of variations, non-smooth and convex analysis, game theory, mathematical economics and in other fields.This book presents a user-friendly and self-contained introduction to both subjects. It is aimed at 'beginners', starting with students of senior courses. The book will be useful both for readers whose interests lie in the sphere of pure mathematics, as well as for those who are involved in applicable aspects of the theory. In Chapter 0, basic definitions and fundamental results in topology are collected. Chapter 1 begins with examples showing how naturally the idea of a multivalued map arises in diverse areas of mathematics, continues with the description of a variety of properties of multivalued maps and finishes with measurable multivalued functions. Chapter 2 is devoted to the theory of fixed points of multivalued maps. The whole of Chapter 3 focuses on the study of differential inclusions and their applications in control theory. The subject of last Chapter 4 is the applications in dynamical systems, game theory, and mathematical economics.The book is completed with the bibliographic commentaries and additions containing the exposition related both to the sections described in the book and to those which left outside its framework. The extensive bibliography (including more than 400 items) leads from basic works to recent studies.




Continuous Selections of Multivalued Mappings


Book Description

This book is dedicated to the theory of continuous selections of multi valued mappings, a classical area of mathematics (as far as the formulation of its fundamental problems and methods of solutions are concerned) as well as !'J-n area which has been intensively developing in recent decades and has found various applications in general topology, theory of absolute retracts and infinite-dimensional manifolds, geometric topology, fixed-point theory, functional and convex analysis, game theory, mathematical economics, and other branches of modern mathematics. The fundamental results in this the ory were laid down in the mid 1950's by E. Michael. The book consists of (relatively independent) three parts - Part A: Theory, Part B: Results, and Part C: Applications. (We shall refer to these parts simply by their names). The target audience for the first part are students of mathematics (in their senior year or in their first year of graduate school) who wish to get familiar with the foundations of this theory. The goal of the second part is to give a comprehensive survey of the existing results on continuous selections of multivalued mappings. It is intended for specialists in this area as well as for those who have mastered the material of the first part of the book. In the third part we present important examples of applications of continuous selections. We have chosen examples which are sufficiently interesting and have played in some sense key role in the corresponding areas of mathematics.




Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces


Book Description

The theory of set-valued maps and of differential inclusion is developed in recent years both as a field of his own and as an approach to control theory. The book deals with the theory of semilinear differential inclusions in infinite dimensional spaces. In this setting, problems of interest to applications do not suppose neither convexity of the map or compactness of the multi-operators. These assumption implies the development of the theory of measure of noncompactness and the construction of a degree theory for condensing mapping. Of particular interest is the approach to the case when the linear part is a generator of a condensing, strongly continuous semigroup. In this context, the existence of solutions for the Cauchy and periodic problems are proved as well as the topological properties of the solution sets. Examples of applications to the control of transmission line and to hybrid systems are presented.




Topological Fixed Point Theory for Singlevalued and Multivalued Mappings and Applications


Book Description

This is a monograph covering topological fixed point theory for several classes of single and multivalued maps. The authors begin by presenting basic notions in locally convex topological vector spaces. Special attention is then devoted to weak compactness, in particular to the theorems of Eberlein–Šmulian, Grothendick and Dunford–Pettis. Leray–Schauder alternatives and eigenvalue problems for decomposable single-valued nonlinear weakly compact operators in Dunford–Pettis spaces are considered, in addition to some variants of Schauder, Krasnoselskii, Sadovskii, and Leray–Schauder type fixed point theorems for different classes of weakly sequentially continuous operators on general Banach spaces. The authors then proceed with an examination of Sadovskii, Furi–Pera, and Krasnoselskii fixed point theorems and nonlinear Leray–Schauder alternatives in the framework of weak topologies and involving multivalued mappings with weakly sequentially closed graph. These results are formulated in terms of axiomatic measures of weak noncompactness. The authors continue to present some fixed point theorems in a nonempty closed convex of any Banach algebras or Banach algebras satisfying a sequential condition (P) for the sum and the product of nonlinear weakly sequentially continuous operators, and illustrate the theory by considering functional integral and partial differential equations. The existence of fixed points, nonlinear Leray–Schauder alternatives for different classes of nonlinear (ws)-compact operators (weakly condensing, 1-set weakly contractive, strictly quasi-bounded) defined on an unbounded closed convex subset of a Banach space are also discussed. The authors also examine the existence of nonlinear eigenvalues and eigenvectors, as well as the surjectivity of quasibounded operators. Finally, some approximate fixed point theorems for multivalued mappings defined on Banach spaces. Weak and strong topologies play a role here and both bounded and unbounded regions are considered. The authors explicate a method developed to indicate how to use approximate fixed point theorems to prove the existence of approximate Nash equilibria for non-cooperative games. Fixed point theory is a powerful and fruitful tool in modern mathematics and may be considered as a core subject in nonlinear analysis. In the last 50 years, fixed point theory has been a flourishing area of research. As such, the monograph begins with an overview of these developments before gravitating towards topics selected to reflect the particular interests of the authors.




Modern Uses of Multiple-Valued Logic


Book Description

This is a collection of invited papers from the 1975 International Sym posium on Multiple-valued Logic. Also included is an extensive bib liography of works in the field of multiple-valued logic prior to 1975 - this supplements and extends an earlier bibliography of works prior to 1965, by Nicholas Rescher in his book Many-Valued Logic, McGraw-Hill, 1969. There are a number of possible reasons for interest in the present volume. First, the range of various uses covered in this collection of papers may be taken as indicative of a breadth which occurs in the field of multiple-valued logic as a whole - the papers here can do no more than cover a small sample: question-answering systems, analysis of computer hazards, algebraic structures relating to multiple-valued logic, algebra of computer programs, fuzzy sets. Second, a large part of the interest in such uses and applications has occurred in the last twenty, even ten years. It would be too much to expect this to be reflected in Rescher's 1969 book. Third, in the 1970's a series of annual symposia have been held on multiple-valued logic, which have brought much of this into a sharp focus. * The 1971 and 1972 symposia were held at the SUNY at Buffalo, the 1973 symposium at the Uni versity of Toronto, and the 1974 symposium at West Virginia Uni versity. Papers from these symposia are included in the bibliography which may be found in an appendix of this book.




Multivalued Fields: In Condensed Matter, Electromagnetism, And Gravitation


Book Description

This book lays the foundations of the theory of fluctuating multivalued fields with numerous applications. Most prominent among these are phenomena dominated by the statistical mechanics of line-like objects, such as the phase transitions in superfluids and superconductors as well as the melting process of crystals, and the electromagnetic potential as a multivalued field that can produce a condensate of magnetic monopoles. In addition, multivalued mappings play a crucial role in deriving the physical laws of matter coupled to gauge fields and gravity with torsion from the laws of free matter. Through careful analysis of each of these applications, the book thus provides students and researchers with supplementary reading material for graduate courses on phase transitions, quantum field theory, gravitational physics, and differential geometry.




Topological Fixed Point Theory of Multivalued Mappings


Book Description

This book is devoted to the topological fixed point theory of multivalued mappings including applications to differential inclusions and mathematical economy. It is the first monograph dealing with the fixed point theory of multivalued mappings in metric ANR spaces. Although the theoretical material was tendentiously selected with respect to applications, the text is self-contained. Current results are presented.




Multiple Valued Logic


Book Description

Multiple Valued Logic: Concepts and Representations begins with a survey of the use ofmultiple-valued logic in several modern application areas including electronic design automation algorithms and circuit design. The mathematical basis and concepts of various algebras and systems of multiple valued logic are provided including comparisons among various systems and examples of their application. The book also provides an examination of alternative representations of multiple-valued logic suitable for implementation as data structures in automated computer applications. Decision diagram structures for multiple valued applications are described in detail with particular emphasis on the recently developed quantum multiple valued decision diagram.