Advanced Machine Learning Approaches in Cancer Prognosis


Book Description

This book introduces a variety of advanced machine learning approaches covering the areas of neural networks, fuzzy logic, and hybrid intelligent systems for the determination and diagnosis of cancer. Moreover, the tactical solutions of machine learning have proved its vast range of significance and, provided novel solutions in the medical field for the diagnosis of disease. This book also explores the distinct deep learning approaches that are capable of yielding more accurate outcomes for the diagnosis of cancer. In addition to providing an overview of the emerging machine and deep learning approaches, it also enlightens an insight on how to evaluate the efficiency and appropriateness of such techniques and analysis of cancer data used in the cancer diagnosis. Therefore, this book focuses on the recent advancements in the machine learning and deep learning approaches used in the diagnosis of different types of cancer along with their research challenges and future directions for the targeted audience including scientists, experts, Ph.D. students, postdocs, and anyone interested in the subjects discussed.




Reinforcement Learning


Book Description

Reinforcement learning encompasses both a science of adaptive behavior of rational beings in uncertain environments and a computational methodology for finding optimal behaviors for challenging problems in control, optimization and adaptive behavior of intelligent agents. As a field, reinforcement learning has progressed tremendously in the past decade. The main goal of this book is to present an up-to-date series of survey articles on the main contemporary sub-fields of reinforcement learning. This includes surveys on partially observable environments, hierarchical task decompositions, relational knowledge representation and predictive state representations. Furthermore, topics such as transfer, evolutionary methods and continuous spaces in reinforcement learning are surveyed. In addition, several chapters review reinforcement learning methods in robotics, in games, and in computational neuroscience. In total seventeen different subfields are presented by mostly young experts in those areas, and together they truly represent a state-of-the-art of current reinforcement learning research. Marco Wiering works at the artificial intelligence department of the University of Groningen in the Netherlands. He has published extensively on various reinforcement learning topics. Martijn van Otterlo works in the cognitive artificial intelligence group at the Radboud University Nijmegen in The Netherlands. He has mainly focused on expressive knowledge representation in reinforcement learning settings.




Learning and Adaption in Multi-Agent Systems


Book Description

This book constitutes the thoroughly refereed post-proceedings of the First International Workshop on Learning and Adaption in Multi-Agent Systems, LAMAS 2005, held in The Netherlands, in July 2005, as an associated event of AAMAS 2005. The 13 revised papers presented together with two invited talks were carefully reviewed and selected from the lectures given at the workshop.




Autonomous Agents and Multiagent Systems


Book Description

This book features a selection of best papers from 13 workshops held at the International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2017, held in Sao Paulo, Brazil, in May 2017. The 17 full papers presented in this volume were carefully reviewed and selected for inclusion in this volume. They cover specific topics, both theoretical and applied, in the general area of autonomous agents and multiagent systems.




Global Oceans 2020 Singapore U S Gulf Coast


Book Description

To promote awareness, understanding, advancement and application of ocean engineering and marine technology This includes all aspects of science, engineering, and technology that address research, development, and operations pertaining to all bodies of water This includes the creation of new capabilities and technologies from concept design through prototypes, testing, and operational systems to sense, explore, understand, develop, use, and responsibly manage natural resources




Sample Efficient Multiagent Learning in the Presence of Markovian Agents


Book Description

The problem of Multiagent Learning (or MAL) is concerned with the study of how intelligent entities can learn and adapt in the presence of other such entities that are simultaneously adapting. The problem is often studied in the stylized settings provided by repeated matrix games (a.k.a. normal form games). The goal of this book is to develop MAL algorithms for such a setting that achieve a new set of objectives which have not been previously achieved. In particular this book deals with learning in the presence of a new class of agent behavior that has not been studied or modeled before in a MAL context: Markovian agent behavior. Several new challenges arise when interacting with this particular class of agents. The book takes a series of steps towards building completely autonomous learning algorithms that maximize utility while interacting with such agents. Each algorithm is meticulously specified with a thorough formal treatment that elucidates its key theoretical properties.




Markov Decision Processes


Book Description

The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. "This text is unique in bringing together so many results hitherto found only in part in other texts and papers. . . . The text is fairly self-contained, inclusive of some basic mathematical results needed, and provides a rich diet of examples, applications, and exercises. The bibliographical material at the end of each chapter is excellent, not only from a historical perspective, but because it is valuable for researchers in acquiring a good perspective of the MDP research potential." —Zentralblatt fur Mathematik ". . . it is of great value to advanced-level students, researchers, and professional practitioners of this field to have now a complete volume (with more than 600 pages) devoted to this topic. . . . Markov Decision Processes: Discrete Stochastic Dynamic Programming represents an up-to-date, unified, and rigorous treatment of theoretical and computational aspects of discrete-time Markov decision processes." —Journal of the American Statistical Association




Principles of Practice in Multi-Agent Systems


Book Description

Agents are software processes that perceive and act in an environment, processing their perceptions to make intelligent decisions about actions to achieve their goals. Multi-agent systems have multiple agents that work in the same environment to achieve either joint or conflicting goals. Agent computing and technology is an exciting, emerging paradigm expected to play a key role in many society-changing practices from disaster response to manufacturing to agriculture. Agent and mul- agent researchers are focused on building working systems that bring together a broad range of technical areas from market theory to software engineering to user interfaces. Agent systems are expected to operate in real-world environments, with all the challenges complex environments present. After 11 successful PRIMA workshops/conferences (Pacific-Rim International Conference/Workshop on Multi-Agents), PRIMA became a new conference titled “International Conference on Principles of Practice in Multi-Agent Systems” in 2009. With over 100 submissions, an acceptance rate for full papers of 25% and 50% for posters, a demonstration session, an industry track, a RoboCup competition and workshops and tutorials, PRIMA has become an important venue for multi-agent research. Papers submitted are from all parts of the world, though with a higher representation of Pacific Rim countries than other major multi-agent research forums. This volume presents 34 high-quality and exciting technical papers on multimedia research and an additional 18 poster papers that give brief views on exciting research.




Rollout, Policy Iteration, and Distributed Reinforcement Learning


Book Description

The purpose of this book is to develop in greater depth some of the methods from the author's Reinforcement Learning and Optimal Control recently published textbook (Athena Scientific, 2019). In particular, we present new research, relating to systems involving multiple agents, partitioned architectures, and distributed asynchronous computation. We pay special attention to the contexts of dynamic programming/policy iteration and control theory/model predictive control. We also discuss in some detail the application of the methodology to challenging discrete/combinatorial optimization problems, such as routing, scheduling, assignment, and mixed integer programming, including the use of neural network approximations within these contexts. The book focuses on the fundamental idea of policy iteration, i.e., start from some policy, and successively generate one or more improved policies. If just one improved policy is generated, this is called rollout, which, based on broad and consistent computational experience, appears to be one of the most versatile and reliable of all reinforcement learning methods. In this book, rollout algorithms are developed for both discrete deterministic and stochastic DP problems, and the development of distributed implementations in both multiagent and multiprocessor settings, aiming to take advantage of parallelism. Approximate policy iteration is more ambitious than rollout, but it is a strictly off-line method, and it is generally far more computationally intensive. This motivates the use of parallel and distributed computation. One of the purposes of the monograph is to discuss distributed (possibly asynchronous) methods that relate to rollout and policy iteration, both in the context of an exact and an approximate implementation involving neural networks or other approximation architectures. Much of the new research is inspired by the remarkable AlphaZero chess program, where policy iteration, value and policy networks, approximate lookahead minimization, and parallel computation all play an important role.




A Concise Introduction to Multiagent Systems and Distributed Artificial Intelligence


Book Description

Multiagent systems is an expanding field that blends classical fields like game theory and decentralized control with modern fields like computer science and machine learning. This monograph provides a concise introduction to the subject, covering the theoretical foundations as well as more recent developments in a coherent and readable manner. The text is centered on the concept of an agent as decision maker. Chapter 1 is a short introduction to the field of multiagent systems. Chapter 2 covers the basic theory of singleagent decision making under uncertainty. Chapter 3 is a brief introduction to game theory, explaining classical concepts like Nash equilibrium. Chapter 4 deals with the fundamental problem of coordinating a team of collaborative agents. Chapter 5 studies the problem of multiagent reasoning and decision making under partial observability. Chapter 6 focuses on the design of protocols that are stable against manipulations by self-interested agents. Chapter 7 provides a short introduction to the rapidly expanding field of multiagent reinforcement learning. The material can be used for teaching a half-semester course on multiagent systems covering, roughly, one chapter per lecture.