Multidimensional Digital Signal Processing


Book Description

Multidimensional signals and systems. Discrete fourier analysis of multidimensional signals. Design and implementation of two-dimensional fir filters. Multidimensional recursive systems. Design and implementation of two-dimensional iir filters. Processing signals carried by propagation waves. Inverse problems.




Multidimensional Signal, Image, and Video Processing and Coding


Book Description

Multidimensional Signal, Image, and Video Processing and Coding gives a concise introduction to both image and video processing, providing a balanced coverage between theory, applications and standards. It gives an introduction to both 2-D and 3-D signal processing theory, supported by an introduction to random processes and some essential results from information theory, providing the necessary foundation for a full understanding of the image and video processing concepts that follow. A significant new feature is the explanation of practical network coding methods for image and video transmission. There is also coverage of new approaches such as: super-resolution methods, non-local processing, and directional transforms. Multidimensional Signal, Image, and Video Processing and Coding also has on-line support that contains many short MATLAB programs that complement examples and exercises on multidimensional signal, image, and video processing. There are numerous short video clips showing applications in video processing and coding, plus a copy of the vidview video player for playing .yuv video files on a Windows PC and an illustration of the effect of packet loss on H.264/AVC coded bitstreams. New to this edition: - New appendices on random processes, information theory - New coverage of image analysis – edge detection, linking, clustering, and segmentation - Expanded coverage on image sensing and perception, including color spaces - Now summarizes the new MPEG coding standards: scalable video coding (SVC) and multiview video coding (MVC), in addition to coverage of H.264/AVC - Updated video processing material including new example on scalable video coding and more material on object- and region-based video coding - More on video coding for networks including practical network coding (PNC), highlighting the significant advantages of PNC for both video downloading and streaming - New coverage of super-resolution methods for image and video - Only R&D level tutorial that gives an integrated treatment of image and video processing - topics that are interconnected - New chapters on introductory random processes, information theory, and image enhancement and analysis - Coverage and discussion of the latest standards in video coding: H.264/AVC and the new scalable video standard (SVC)




Multidimensional Signal and Color Image Processing Using Lattices


Book Description

An Innovative Approach to Multidimensional Signals and Systems Theory for Image and Video Processing In this volume, Eric Dubois further develops the theory of multi-D signal processing wherein input and output are vector-value signals. With this framework, he introduces the reader to crucial concepts in signal processing such as continuous- and discrete-domain signals and systems, discrete-domain periodic signals, sampling and reconstruction, light and color, random field models, image representation and more. While most treatments use normalized representations for non-rectangular sampling, this approach obscures much of the geometrical and scale information of the signal. In contrast, Dr. Dubois uses actual units of space-time and frequency. Basis-independent representations appear as much as possible, and the basis is introduced where needed to perform calculations or implementations. Thus, lattice theory is developed from the beginning and rectangular sampling is treated as a special case. This is especially significant in the treatment of color and color image processing and for discrete transform representations based on symmetry groups, including fast computational algorithms. Other features include: An entire chapter on lattices, giving the reader a thorough grounding in the use of lattices in signal processing Extensive treatment of lattices as used to describe discrete-domain signals and signal periodicities Chapters on sampling and reconstruction, random field models, symmetry invariant signals and systems and multidimensional Fourier transformation properties Supplemented throughout with MATLAB examples and accompanying downloadable source code Graduate and doctoral students as well as senior undergraduates and professionals working in signal processing or video/image processing and imaging will appreciate this fresh approach to multidimensional signals and systems theory, both as a thorough introduction to the subject and as inspiration for future research.




Multidimensional Signals, Circuits and Systems


Book Description

Although research on general multidimensional systems theory has been developing rapidly in recent years, this is the first research text to appear on the subject since the early 1980s. The text describes the current state of the art nD systems and sets out a number of open problems, and gives several different perspectives on the subject. It presents a number of different solutions to major theoretical problems as well as some interesting practical results. The book comprises of a selection of plenary and other lectures given at The First International Workshop on Multidimensional (nD) Systems (NDS-98) held in 1998 in Poland, and is written by leading world specialists in the field.




Two-dimensional Signal and Image Processing


Book Description

New to P-H Signal Processing Series (Alan Oppenheim, Series Ed) this text covers the principles and applications of "multidimensional" and "image" digital signal processing. For Sr/grad level courses in image processing in EE departments.




An Introduction to Digital Signal Processing


Book Description

An Introduction to Digital Signal Processing is written for those who need to understand and use digital signal processing and yet do not wish to wade through a multi-semester course sequence. Using only calculus-level mathematics, this book progresses rapidly through the fundamentals to advanced topics such as iterative least squares design of IIR filters, inverse filters, power spectral estimation, and multidimensional applications--all in one concise volume. This book emphasizes both the fundamental principles and their modern computer implementation. It presents and demonstrates how simple the actual computer code is for advanced modern algorithms used in DSP. Results of these programs, which the reader can readily duplicate and use on a PC, are presented in many actual computer drawn plots. - Assumes no previous knowledge of signal processing but leads up to very advanced techniquescombines exposition of fundamental principles with practical applications - Includes problems with each chapter - Presents in detail the appropriate computer algorithums for solving problems




Digital Signal Filtering, Analysis and Restoration


Book Description

In the belief that every engineer and scientist working with signals or data should have a knowledge of them, Jan (electrical engineering and computer science, Technical U. of Brno, Czech Republic) explains some of the theoretical concepts that underlie the methods now in common use to process and analyze signals and data. He examines such topics as classical digital filtering, averaging methods to improve the signal-to-noise ratio of repetitive signals, correlation and spectral analysis, methods to estimate and define unknown signals, non-linear processing and neural networks, and multidimensional signals and data. The Czech original Cislicova filtrace, analyza a resaurace signalu was published by Vutium Press, Brno, in 1997. c. Book News Inc.




Mathematics of Multidimensional Fourier Transform Algorithms


Book Description

The main emphasis of this book is the development of algorithms for processing multi-dimensional digital signals, and particularly algorithms for multi-dimensional Fourier transforms, in a form that is convenient for writing highly efficient code on a variety of vector and parallel computers.




Digital Signal Processing


Book Description

Digital signal processing (DSP) has been applied to a very wide range of applications. This includes voice processing, image processing, digital communications, the transfer of data over the internet, image and data compression, etc. Engineers who develop DSP applications today, and in the future, will need to address many implementation issues including mapping algorithms to computational structures, computational efficiency, power dissipation, the effects of finite precision arithmetic, throughput and hardware implementation. It is not practical to cover all of these in a single text. However, this text emphasizes the practical implementation of DSP algorithms as well as the fundamental theories and analytical procedures that form the basis for modern DSP applications. Digital Signal Processing: Principles, Algorithms and System Design provides an introduction to the principals of digital signal processing along with a balanced analytical and practical treatment of algorithms and applications for digital signal processing. It is intended to serve as a suitable text for a one semester junior or senior level undergraduate course. It is also intended for use in a following one semester first-year graduate level course in digital signal processing. It may also be used as a reference by professionals involved in the design of embedded computer systems, application specific integrated circuits or special purpose computer systems for digital signal processing, multimedia, communications, or image processing. - Covers fundamental theories and analytical procedures that form the basis of modern DSP - Shows practical implementation of DSP in software and hardware - Includes Matlab for design and implementation of signal processing algorithms and related discrete time systems - Bridges the gap between reference texts and the knowledge needed to implement DSP applications in software or hardware




Digital Signal Processing with Kernel Methods


Book Description

A realistic and comprehensive review of joint approaches to machine learning and signal processing algorithms, with application to communications, multimedia, and biomedical engineering systems Digital Signal Processing with Kernel Methods reviews the milestones in the mixing of classical digital signal processing models and advanced kernel machines statistical learning tools. It explains the fundamental concepts from both fields of machine learning and signal processing so that readers can quickly get up to speed in order to begin developing the concepts and application software in their own research. Digital Signal Processing with Kernel Methods provides a comprehensive overview of kernel methods in signal processing, without restriction to any application field. It also offers example applications and detailed benchmarking experiments with real and synthetic datasets throughout. Readers can find further worked examples with Matlab source code on a website developed by the authors: http://github.com/DSPKM • Presents the necessary basic ideas from both digital signal processing and machine learning concepts • Reviews the state-of-the-art in SVM algorithms for classification and detection problems in the context of signal processing • Surveys advances in kernel signal processing beyond SVM algorithms to present other highly relevant kernel methods for digital signal processing An excellent book for signal processing researchers and practitioners, Digital Signal Processing with Kernel Methods will also appeal to those involved in machine learning and pattern recognition.