Multidimensional Minimizing Splines


Book Description

This book is of interest to mathematicians, geologists, engineers and, in general, researchers and post graduate students involved in spline function theory, surface fitting problems or variational methods. From reviews: The book is well organized, and the English is very good. I recommend the book to researchers in approximation theory, and to anyone interested in bivariate data fitting." (L.L. Schumaker, Mathematical Reviews, 2005).




Analytic Number Theory, Approximation Theory, and Special Functions


Book Description

This book, in honor of Hari M. Srivastava, discusses essential developments in mathematical research in a variety of problems. It contains thirty-five articles, written by eminent scientists from the international mathematical community, including both research and survey works. Subjects covered include analytic number theory, combinatorics, special sequences of numbers and polynomials, analytic inequalities and applications, approximation of functions and quadratures, orthogonality and special and complex functions. The mathematical results and open problems discussed in this book are presented in a simple and self-contained manner. The book contains an overview of old and new results, methods, and theories toward the solution of longstanding problems in a wide scientific field, as well as new results in rapidly progressing areas of research. The book will be useful for researchers and graduate students in the fields of mathematics, physics and other computational and applied sciences.




Spline Functions on Triangulations


Book Description

Comprehensive graduate text offering a detailed mathematical treatment of polynomial splines on triangulations.




Multivariate Approximation and Splines


Book Description

This book contains the refereed papers which were presented at the interna tional conference on "Multivariate Approximation and Splines" held in Mannheim, Germany, on September 7-10,1996. Fifty experts from Bulgaria, England, France, Israel, Netherlands, Norway, Poland, Switzerland, Ukraine, USA and Germany participated in the symposium. It was the aim of the conference to give an overview of recent developments in multivariate approximation with special emphasis on spline methods. The field is characterized by rapidly developing branches such as approximation, data fit ting, interpolation, splines, radial basis functions, neural networks, computer aided design methods, subdivision algorithms and wavelets. The research has applications in areas like industrial production, visualization, pattern recognition, image and signal processing, cognitive systems and modeling in geology, physics, biology and medicine. In the following, we briefly describe the contents of the papers. Exact inequalities of Kolmogorov type which estimate the derivatives of mul the paper of BABENKO, KOFANovand tivariate periodic functions are derived in PICHUGOV. These inequalities are applied to the approximation of classes of mul tivariate periodic functions and to the approximation by quasi-polynomials. BAINOV, DISHLIEV and HRISTOVA investigate initial value problems for non linear impulse differential-difference equations which have many applications in simulating real processes. By applying iterative techniques, sequences of lower and upper solutions are constructed which converge to a solution of the initial value problem.




Mathematics of Surfaces XIII


Book Description

This book constitutes the refereed proceedings of the 13th IMA International Conference on the Mathematics of Surfaces held in York, UK in September 2009. The papers in the present volume include seven invited papers, as well as 16 submitted papers. The topics covered include subdivision schemes and their continuity, polar patchworks, compressive algorithms for PDEs, surface invariant functions, swept volume parameterization, Willmore flow, computational conformal geometry, heat kernel embeddings, and self-organizing maps on manifolds, mesh and manifold construction, editing, flattening, morphing and interrogation, dissection of planar shapes, symmetry processing, morphable models, computation of isophotes, point membership classification and vertex blends. Surface types considered encompass polygon meshes as well as parametric and implicit surfaces.




Cognitive Behavioural Systems


Book Description

This book constitutes refereed proceedings of the COST 2102 International Training School on Cognitive Behavioural Systems held in Dresden, Germany, in February 2011. The 39 revised full papers presented were carefully reviewed and selected from various submissions. The volume presents new and original research results in the field of human-machine interaction inspired by cognitive behavioural human-human interaction features. The themes covered are on cognitive and computational social information processing, emotional and social believable Human-Computer Interaction (HCI) systems, behavioural and contextual analysis of interaction, embodiment, perception, linguistics, semantics and sentiment analysis in dialogues and interactions, algorithmic and computational issues for the automatic recognition and synthesis of emotional states.




Multivariate Splines


Book Description

The subject of multivariate splines has become a rapidly growing field of mathematical research. The author presents the subject from an elementary point of view that parallels the theory and development of univariate spline analysis. To compensate for the missing proofs and details, an extensive bibliography has been included. There is a presentation of open problems with an emphasis on the theory and applications to computer-aided design, data analysis, and surface fitting. Applied mathematicians and engineers working in the areas of curve fitting, finite element methods, computer-aided geometric design, signal processing, mathematical modelling, computer-aided design, computer-aided manufacturing, and circuits and systems will find this monograph essential to their research.




Polynomials


Book Description

Polynomials are well known for their ability to improve their properties and for their applicability in the interdisciplinary fields of engineering and science. Many problems arising in engineering and physics are mathematically constructed by differential equations. Most of these problems can only be solved using special polynomials. Special polynomials and orthonormal polynomials provide a new way to analyze solutions of various equations often encountered in engineering and physical problems. In particular, special polynomials play a fundamental and important role in mathematics and applied mathematics. Until now, research on polynomials has been done in mathematics and applied mathematics only. This book is based on recent results in all areas related to polynomials. Divided into sections on theory and application, this book provides an overview of the current research in the field of polynomials. Topics include cyclotomic and Littlewood polynomials; Descartes' rule of signs; obtaining explicit formulas and identities for polynomials defined by generating functions; polynomials with symmetric zeros; numerical investigation on the structure of the zeros of the q-tangent polynomials; investigation and synthesis of robust polynomials in uncertainty on the basis of the root locus theory; pricing basket options by polynomial approximations; and orthogonal expansion in time domain method for solving Maxwell's equations using paralleling-in-order scheme.




Intelligent Multidimensional Data Clustering and Analysis


Book Description

Data mining analysis techniques have undergone significant developments in recent years. This has led to improved uses throughout numerous functions and applications. Intelligent Multidimensional Data Clustering and Analysis is an authoritative reference source for the latest scholarly research on the advantages and challenges presented by the use of cluster analysis techniques. Highlighting theoretical foundations, computing paradigms, and real-world applications, this book is ideally designed for researchers, practitioners, upper-level students, and professionals interested in the latest developments in cluster analysis for large data sets.




Mathematical Reviews


Book Description