Mathematical Modeling of Biofilms


Book Description

Over 90% of bacterial biomass exists in the form of biofilms. The ability of bacteria to attach to surfaces and to form biofilms often is an important competitive advantage for them over bacteria growing in suspension. Some biofilms are "good" in natural and engineered systems; they are responsible for nutrient cycling in nature and are used to purify waters in engineering processes. Other biofilms are "bad" when they cause fouling and infections of humans and plants. Whether we want to promote good biofilms or eliminate bad biofilms, we need to understand how they work and what works to control them. Mathematical Modeling of Biofilms provides guidelines for the selection and use of mathematical models of biofilms. The whole range of existing models - from simple analytical expressions to complex numerical models - is covered. The application of the models for the solution of typical problems is demonstrated, and the performance of the models is tested in comparative studies. With the dramatic evolution of the computational capacity still going on, modeling tools for research and practice will become more and more significant in the next few years. This report provides the foundation to understand the models and to select the most appropriate one for a given use. Mathematical Modeling of Biofilms gives a state-of-the-art overview that is especially valuable for educating students, new biofilm researchers, and design engineers. Through a series of three benchmark problems, the report demonstrates how to use the different models and indicates when simple or highly complex models are most appropriate. This is the first report to give a quantitative comparison of existing biofilm models. The report supports model-based design of biofilm reactors. The report can be used as basis for teaching biofilm-system modeling. The report provides the foundation for researchers seeking to use biofilm modeling or to develop new biofilm models. Scientific and Technical Report No.18




Advanced Methods and Mathematical Modeling of Biofilms


Book Description

Advanced Mathematical Modelling of Biofilms and its Applications covers the concepts and fundamentals of biofilms, including sections on numerical discrete and numerical continuum models and different biofilms methods, e.g., the lattice Boltzmann method (LBM) and cellular automata (CA) and integrated LBM and individual-based model (iBM). Other sections focus on design, problem-solving and state-of-the-art modelling methods. Addressing the needs to upgrade and update information and knowledge for students, researchers and engineers on biofilms in health care, medicine, food, aquaculture and industry, this book also covers areas of uncertainty and future needs for advancing the use of biofilm models. Over the past 25-30 years, there have been rapid advances in various areas of computer technologies, applications and methods (e.g. complex programming and algorithms, lattice Boltzmann method, high resolution visualization and high-performance computation). These new and emerging technologies are providing unprecedented opportunities to develop modeling frameworks of biofilms and their applications. Introduces state-of-the-art methods of biofilm modeling, such as integrated lattice Boltzmann method (LBM) and cellular automata (CA) and integrated LBM and individual-based model (iBM) Provides recent progress in more powerful tools for a deeper understanding of biofilm complexity by implementing state-of-the art biofilm modeling programs Compares advantages and disadvantages of different biofilm models and analyzes some specific problems for model selection Evaluates novel process designs without the cost, time and risk of building a physical prototype of the process to identify the most promising designs for experimental testing




Microbial Ecology of Biofilms


Book Description

Biofilms are ubiquitous, yet until recently scientists and engineers involved in biofilm research or application had a severely limited insight into the structure and functioning of biofilms on a microbial level. However the past decade has seen an explosion of new techniques to elucidate the structure and functions of biofilms, e.g. molecular probes, microsensors, scanning electron microscopy, and a new generation of mathematical models. The 35 contributions selected for these proceedings after peer review reflect these developments with papers grouped into the following themes: nutrient removal systems; anaerobic systems; biofilm physical structure and aerobic water treatment; multidimensional modelling; detoxification of hazardous chemicals; and transport processes in and to the biofilm. The proceedings provide a unique panorama of the latest scientific tools, the emerging new concepts and the widespread applications that are making microbial ecology of biofilms such an exciting field. These genuinely state-of-the-art papers lay foundations for great progress in the next century.




Analysis of the Multidimensional Effects in Biofilms


Book Description

A general multidimensional, multispecies, heterogenous biofilm model is developed using the balance equations. Multidimensional effects are studied by taking limiting scenarios towards lower dimensional analogues, as well as studying the effects of changing biofilm surface geometries. Error-maps are developed suggesting when single-dimensional models give an accurate representation of biofilm growth, and when multidimensional effects are substantial. A porous media model is studied, where the bacteria Pseudomonas aeruginosa is modeled to grow in a packed porous bed of spheres. It is found that under most circumstances, single-dimensional models predict very similar growth rates as compared to their multidimensional analogues. However, under some conditions the multidimensionality can have a significant effect in the model's predictions. To the authors' best knowledge, this is the first work which develops error maps detailing multidimensional effects of biofilm growth.




Community Structure and Co-operation in Biofilms


Book Description

The study of biofilm considers the close association of micro-organisms with each other at interfaces and is relevant to a variety of disciplines, including medicine, dentistry, bioremediation, biofouling, water technology, engineering and food science. Although the habitats studied differ widely, some common elements exist such as method of attachment, coadhesion and regulation of biofilm phenotype and architecture. This book aims to distil the common principles of biofilm physiology and growth for all interested disciplines.




Fundamentals of Biofilm Research


Book Description

The six years that have passed since the publication of the first edition have brought significant advances in both biofilm research and biofilm engineering, which have matured to the extent that biofilm-based technologies are now being designed and implemented. As a result, many chapters have been updated and expanded with the addition of sections




Productive Biofilms


Book Description

This book review series presents current trends in modern biotechnology. The aim is to cover all aspects of this interdisciplinary technology where knowledge, methods and expertise are required from chemistry, biochemistry, microbiology, genetics, chemical engineering and computer science. Volumes are organized topically and provide a comprehensive discussion of developments in the respective field over the past 3-5 years. The series also discusses new discoveries and applications. Special volumes are dedicated to selected topics which focus on new biotechnological products and new processes for their synthesis and purification. In general, special volumes are edited by well-known guest editors. The series editor and publisher will however always be pleased to receive suggestions and supplementary information. Manuscripts are accepted in English.







Biofilms in Medicine, Industry and Environmental Biotechnology


Book Description

Biofilms are of great practical importance for beneficial technologies such as water and wastewater treatment and bioremediation of groundwater and soil. In other settings biofilms cause severe problems, for example in 65% of bacterial infections currently treated by clinicians (particularly those associated with prosthetics and implants), accelerated corrosion in industrial systems, oil souring and biofouling. Until recently, the structure and function of biofilms could only be inferred from gross measures of biomass and metabolic activity. This limitation meant that investigators involved in biofilm research and application had only a crude understanding of the microbial ecology, physical structure and chemical characteristics of biofilms. Consequently, opportunities for the exploitation and control of biofilms were very limited. The past decade has witnessed the development of several new techniques to elucidate the structure and function of biofilms. Examples include: the use of molecular probes that identify different microbes in complex communities as well as their metabolic functions; the use of microsensors that show concentration gradients of key nutrients and chemicals; the use of confocal laser scanning microscopy to describe the physical structure of biofilms and the development of a new generation of mathematical models that allow for the prediction of biofilm structure and function. However, much progress remains to be made in efforts to understand, control and exploit biofilms. This timely book will introduce its readers to the structure and function of biofilms at a fundamental level as determined during the past decade of research, including: Extracellular polymers as the biofilm matrix; Biofilm phenotype (differential gene expression, interspecies signalling); Biofilm ecology; Biofilm monitoring; Resistance of biofilms to antimicrobial agents and Biofilm abatement. Biofilms in Medicine, Industry and Environmental Technology offers a holistic and multi-disciplinary description of the topic, including biofilm formation and composition, but also biofilm monitoring, disinfection and control. All these aspects are presented from three points of views: medical, industrial and environmental biotechnological in a compact, easy to read format.