Traveling Wave Solutions of Parabolic Systems


Book Description

The theory of travelling waves described by parabolic equations and systems is a rapidly developing branch of modern mathematics. This book presents a general picture of current results about wave solutions of parabolic systems, their existence, stability, and bifurcations. With introductory material accessible to non-mathematicians and a nearly complete bibliography of about 500 references, this book is an excellent resource on the subject.







Introduction to Traveling Waves


Book Description

Introduction to Traveling Waves is an invitation to research focused on traveling waves for undergraduate and masters level students. Traveling waves are not typically covered in the undergraduate curriculum, and topics related to traveling waves are usually only covered in research papers, except for a few texts designed for students. This book includes techniques that are not covered in those texts. Through their experience involving undergraduate and graduate students in a research topic related to traveling waves, the authors found that the main difficulty is to provide reading materials that contain the background information sufficient to start a research project without an expectation of an extensive list of prerequisites beyond regular undergraduate coursework. This book meets that need and serves as an entry point into research topics about the existence and stability of traveling waves. Features Self-contained, step-by-step introduction to nonlinear waves written assuming minimal prerequisites, such as an undergraduate course on linear algebra and differential equations. Suitable as a textbook for a special topics course, or as supplementary reading for courses on modeling. Contains numerous examples to support the theoretical material. Supplementary MATLAB codes available via GitHub.







Asymptotic Analysis of Dissipative Waves with Applications to Their Numerical Simulation


Book Description

Various problems involving the interplay of asymptotics and numerics in the analysis of wave propagation in dissipative systems are studied. A general approach to the asymptotic analysis of linear, dissipative waves is developed. It was applied to the derivation of asymptotic boundary conditions for numerical solutions on unbounded domains. Applications include the Navier-Stokes equations. Multidimensional traveling wave solutions to reaction-diffusion equations are also considered. A preliminary numerical investigation of a thermo-diffusive model of flame propagation in a channel with heat loss at the walls is presented. Hagstrom, Thomas Glenn Research Center NASA-TM-103231, ICOMP-90-19, E-5647, NAS 1.15:103231 NASA ORDER C-99066-G; NSF DMS-89-05314; RTOP 505-62-21...







Traveling Wave Solutions of Parabolic Systems


Book Description

The theory of traveling waves described by parabolic equations and systems is a rapidly developing branch of modern mathematics. This book presents a general picture of current results about wave solutions of parabolic systems, their existence, stability, and bifurcations. The main part of the book contains original approaches developed by the authors. Among these are a description of the long-term behavior of the solutions by systems of waves; construction of rotations of vector fields for noncompact operators describing wave solutions; a proof of the existence of waves by the Leray-Schauder method; local, global, and nonlinear stability analyses for some classes of systems; and a determination of the wave velocity by the minimax method and the method of successive approximations.The authors show that wide classes of reaction-diffusion systems can be reduced to so-called monotone and locally monotone systems. This fundamental result allows them to apply the theory to combustion and chemical kinetics. With introductory material accessible to nonmathematicians and a nearly complete bibliography of about 500 references, this book is an excellent resource on the subject.







Shock Waves and Reaction—Diffusion Equations


Book Description

For this edition, a number of typographical errors and minor slip-ups have been corrected. In addition, following the persistent encouragement of Olga Oleinik, I have added a new chapter, Chapter 25, which I titled "Recent Results." This chapter is divided into four sections, and in these I have discussed what I consider to be some of the important developments which have come about since the writing of the first edition. Section I deals with reaction-diffusion equations, and in it are described both the work of C. Jones, on the stability of the travelling wave for the Fitz-Hugh-Nagumo equations, and symmetry-breaking bifurcations. Section II deals with some recent results in shock-wave theory. The main topics considered are L. Tartar's notion of compensated compactness, together with its application to pairs of conservation laws, and T.-P. Liu's work on the stability of viscous profiles for shock waves. In the next section, Conley's connection index and connection matrix are described; these general notions are useful in con structing travelling waves for systems of nonlinear equations. The final sec tion, Section IV, is devoted to the very recent results of C. Jones and R. Gardner, whereby they construct a general theory enabling them to locate the point spectrum of a wide class of linear operators which arise in stability problems for travelling waves. Their theory is general enough to be applica ble to many interesting reaction-diffusion systems.