Integrated Design of Multiscale, Multifunctional Materials and Products


Book Description

Integrated Design of Multiscale, Multifunctional Materials and Products is the first of its type to consider not only design of materials, but concurrent design of materials and products. In other words, materials are not just selected on the basis of properties, but the composition and/or microstructure iw designed to satisfy specific ranged sets of performance requirements. This book presents the motivation for pursuing concurrent design of materials and products, thoroughly discussing the details of multiscale modeling and multilevel robust design and provides details of the design methods/strategies along with selected examples of designing material attributes for specified system performance. It is intended as a monograph to serve as a foundational reference for instructors of courses at the senior and introductory graduate level in departments of materials science and engineering, mechanical engineering, aerospace engineering and civil engineering who are interested in next generation systems-based design of materials. - First of its kind to consider not only design of materials, but concurrent design of materials and products - Treatment of uncertainty via robust design of materials - Integrates the "materials by design approach" of Olson/Ques Tek LLC with the "materials selection" approach of Ashby/Granta - Distinquishes the processes of concurrent design of materials and products as an overall systems design problem from the field of multiscale modeling - Systematic mathematical algorithms and methods are introduced for robust design of materials, rather than ad hoc heuristics--it is oriented towards a true systems approach to design of materials and products




Advanced Lightweight Multifunctional Materials


Book Description

Advanced Lightweight Multifunctional Materials presents the current state-of-the-art on multifunctional materials research, focusing on different morphologies and their preparation and applications. The book emphasizes recent advances on these types of materials as well as their application. Chapters cover porous multifunctional materials, thermochromic and thermoelectric materials, shape memory materials, piezoelectric multifunctional materials, electrochromic and electrorheological, soft materials, magnetic and photochromic materials, and more. The book will be a valuable reference resource for academic researchers and industrial engineers working in the design and manufacture of multifunctional materials, composites and nanocomposites. - Provides detailed information on design, modeling and structural applications - Focuses on characteristics, processing, design and applications - Discusses the main types of lightweight multifunctional materials and processing techniques, as well as the physico-chemical insights that can lead to improved performance




Nanoscale Multifunctional Materials


Book Description

This book consolidates various aspects of nanomaterials, highlighting their versatility as well as how the same materials can be used in seemingly diverse applications spanning across disciplines. It captures the multi-disciplinary and multi-functional aspects of nanomaterials in a holistic way. Chapters address the key attributes of nanoscale materials that make them special and desirable as novel materials; functionality that emerges based on these unique attributes; multiple uses of nanomaterials incuding combining properties and materials selection, and then separate chapters devoted to energy, biomedical materials, environmental applications, and chemical engineering applications.




Lanthanide-Based Multifunctional Materials


Book Description

Lanthanide-Based Multifunctional Materials: From OLEDs to SIMs serves as a comprehensive and state-of the art review on these promising compounds, delivering a panorama of their extensive and rapidly growing applications. After an introductory chapter on the theoretical description of the optical and magnetic behaviour of lanthanides and on the prediction of their properties by ab-initio methods, four chapters are devoted to lanthanide-based OLEDs, including the latest trends in visible emitters, the emerging field of near infrared emitters and the first achievements attained in the field of chiral OLEDs. The use of lanthanide complexes as molecular magnets spreads over another two chapters, which explain the evolution of 4f-elements-based SIMs and the most recent advances in heterometallic 3d–4f SMMs. Other very active research areas are covered in the remaining five chapters, dedicated to lanthanide-doped germanate and tellurite glasses, luminescent materials for up-conversion, luminescent thermosensors, multimodal imaging and therapeutic agents, and chemosensors. The book is aimed at academic and industrial researchers, undergraduates and postgraduates alike, and is of particular interest for the Materials Science, Applied Physics and Applied Chemistry communities. - Includes the latest progress on lanthanide-based materials and their applications (in OLEDs, SIMs, doped matrices, up-conversion, thermosensors, theragnostics and chemosensors) - Presents basic and applied aspects of the Physics and Chemistry of lanthanide compounds, as well as future lines of action - Covers successful examples of devices and proofs-of-concept and provides guidelines for the rational design of new materials




Nanostructured Multifunctional Materials


Book Description

The development of nanomaterials plays a fundamental role in current and future technology applications, particularly nanomaterials that have multiple functionalities. This book provides a broad overview of the effect of nanostructuring in the multifunctionality of different widely studied nanomaterials. This book is divided into four sections constituting a road map that groups materials sharing certain types of nanostructuring, including nanoporous, nanoparticled, 2D laminar nanomaterials, and computational methods for characterizations of nanostructures. This structured approach in nanomaterials research will serve as a valuable reference material for chemists, (bio)engineers, physicists, nanotechnologists, undergraduates, and professors.




Multifunctionality of Polymer Composites


Book Description

Approx.964 pagesApprox.964 pages




Mesoscopic Phenomena in Multifunctional Materials


Book Description

A highly coveted objective of modern materials science is to optimize multiple coupled functionalities in the same single phase material and control the cross-response via multiple external fields. One important example of such multi-functionality are multiferroic materials where two or more ferroic properties are intrinsically coupled. They include, among others, the magneto-electric and magneto-structural materials, which are well understood at the nano- and continuum length (and time) scales. The next emerging frontier is to connect these two limiting scales by probing the mesoscale physics of these materials. This book not only attempts to provide this connection but also presents the state-of-the art of the present understanding and potential applications of many related complex multifunctional materials. The main emphasis is on the multiscale bridging of their properties with the aim to discover novel properties and applications in the context of materials by design. This interdisciplinary book serves both graduate students and expert researchers alike.




Advanced Multifunctional Materials from Fibrous Structures


Book Description

This book highlights some aspects of processing, microstructure, and properties of materials in fibrous form, or from fibers, with wide applications for textile-oriented and technically oriented advanced products. Emphasis is placed on the physical and chemical nature of the processes, describing the behavior and properties of the investigated materials. The chapters describing the state and expected trends in selected areas summarize not only the published works but also the original results and the critical evaluation and generalization of basic knowledge. In addition to the preparation of materials with new effects, attention is focused on the development of new testing principles, the construction of special devices, and metrological aspects. Research activities cover all types of fibers with a clear shift toward synthetic and specialty fibers for non-clothing applications. This is in line with the current development trend in the field of high-performance fibers, mainly for use as reinforcement in various composite materials and functional fibers for smart textiles. The area of fibrous materials covered in this book is indeed very large. Compressing the basic available information in a reasonable space was therefore a difficult task. The goal in writing this book was to provide a broad area of different results so that the book is suitable for anyone who is generally interested in fibrous materials and their applications for various purposes.




Advanced Processing and Manufacturing Technologies for Structural and Multifunctional Materials V, Volume 32, Issue 8


Book Description

This book is a collection of papers from The American Ceramic Society's 35th International Conference on Advanced Ceramics and Composites, held in Daytona Beach, Florida, January 23-28, 2011. This issue includes papers presented in the 5th International Symposium on Advanced Processing and Manufacturing Technologies for Structural and Multifunctional Materials and Systems on topics such as Design-Oriented Manufacturing and Novel Forming and Sintering. Papers from a special session held in honor of Katsutoshi Komeya of Yokohama National University, Japan are also included.




Mechanics of Time-Dependent Materials and Processes in Conventional and Multifunctional Materials, Volume 3


Book Description

Mechanics of Time-Dependent Materials and Processes in Conventional and Multifunctional Materials represents one of eight volumes of technical papers presented at the Society for Experimental Mechanics Annual Conference on Experimental and Applied Mechanics, held at Uncasville, Connecticut, June 13-16, 2011. The full set of proceedings also includes volumes on Dynamic Behavior of Materials, Mechanics of Biological Systems and Materials; MEMS and Nanotechnology; Optical Measurements, Modeling and, Metrology; Experimental and Applied Mechanics, Thermomechanics and Infra-Red Imaging, and Engineering Applications of Residual Stress.