Multifunctional Piezoelectric Oxide Nanostructures


Book Description

Multifunctional Piezoelectric Oxide Nanostructures: Fabrication Methods, Devices and Applications reviews multifunctional piezoelectric oxides, including their growth, thin films, composite films, interfacial doping effects, energy harvesting devices, and battery-free sensors. The book bridges the connection between the theoretical and experimental aspects of piezoelectric oxides, also explaining the pathways between materials-device designs-application sectors through various state-of-the-art techniques. Other sections cover the desirable properties of piezoelectric oxides, including pyroelectric, magnetoelectric, piezoelectrochemical and electrocaloric. This book is suitable for those working in the field of materials science and engineering in academia and research and development. Reviews fundamentals, materials, technologies and applications of piezoelectric oxide nanostructures Addresses the most relevant applications in sensing (self-powered, biomedical, MEMS, infrared) and energy harvesting Discusses the growth, design and fabrication of piezoelectric oxide nanostructured materials for desirable properties




Multifunctional Nanostructured Metal Oxides for Energy Harvesting and Storage Devices


Book Description

Metal oxide nanoparticles exhibit potential applications in energy and environmental fields, such as solar cells, fuel cells, hydrogen energy, and energy storage devices. This book covers all points from synthesis, properties, and applications of transition metal oxide nanoparticle materials in energy storage and conversion devices. Aimed at graduate-level students and researchers associated with the energy and environment sector, this book addresses the application of nontoxic and environmentally friendly metal oxide materials for a clean environment and deals with synthesis properties and application metal oxides materials for energy conversion, energy storage, and hydrogen generation.




Metal Oxide-Based Nanostructured Electrocatalysts for Fuel Cells, Electrolyzers, and Metal-Air Batteries


Book Description

Metal Oxide-Based Nanostructured Electrocatalysts for Fuel Cells, Electrolyzers, and Metal-Air Batteries is a comprehensive book summarizing the recent overview of these new materials developed to date. The book is motivated by research that focuses on the reduction of noble metal content in catalysts to reduce the cost associated to the entire system. Metal oxides gained significant interest in heterogeneous catalysis for basic research and industrial deployment. Metal Oxide-Based Nanostructured Electrocatalysts for Fuel Cells, Electrolyzers, and Metal-Air Batteries puts these opportunities and challenges into a broad context, discusses the recent researches and technological advances, and finally provides several pathways and guidelines that could inspire the development of ground-breaking electrochemical devices for energy production or storage. Its primary focus is how materials development is an important approach to produce electricity for key applications such as automotive and industrial. The book is appropriate for those working in academia and R&D in the disciplines of materials science, chemistry, electrochemistry, and engineering. - Includes key aspects of materials design to improve the performance of electrode materials for energy conversion and storage device applications - Reviews emerging metal oxide materials for hydrogen production, hydrogen oxidation, oxygen reduction and oxygen evolution - Discusses metal oxide electrocatalysts for water-splitting, metal-air batteries, electrolyzer, and fuel cell applications




Multifunctional Oxide Heterostructures


Book Description

This book is devoted to the rapidly developing field of oxide thin-films and heterostructures. Oxide materials combined with atomic-scale precision in a heterostructure exhibit an abundance of macroscopic physical properties involving the strong coupling between the electronic, spin, and structural degrees of freedom, and the interplay between magnetism, ferroelectricity, and conductivity. Recent advances in thin-film deposition and characterization techniques made possible the experimental realization of such oxide heterostructures, promising novel functionalities and device concepts. The book consists of chapters on some of the key innovations in the field over recent years, including strongly correlated oxide heterostructures, magnetoelectric coupling and multiferroic materials, thermoelectric phenomena, and two-dimensional electron gases at oxide interfaces. The book covers the core principles, describes experimental approaches to fabricate and characterize oxide heterostructures, demonstrates new functional properties of these materials, and provides an overview of novel applications.




Metal Oxide-Based Nanofibers and Their Applications


Book Description

Metal Oxide-based Nanofibers and their Applications provides an in-depth overview on developments surrounding the synthesis, characterization properties, and applications achieved by scientific leaders in the area. Sections deal with the theoretical and experimental aspects of the synthesis and methodologies to control microstructure, composition and shape of the nanofibrous metal oxides, review the applications of metal oxide nanofibers in diverse technologies, with special focus on the relation between the structural, morphological and compositional features of the nanofibers, cover applications of metal oxide nanofibers in the fields of sensing (biosensing, gas sensing), and consider biomedical and cleaning technologies. Lastly, a final section covers their application in energy generation and storage technologies (e. g. piezoelectric, solar cells, solid oxide fuel cells, lithium-ion batteries, supercapacitors, and hydrogen storage are reviewed. - Reviews electrospinning methods for the synthesis and design of nanocomposites and hybrid metal oxide nanofibers - Discusses applications of metal oxide nanofibers in sensing, biomedical fields, cleaning technologies, and energy - Emphasizes the structural, morphological and compositional properties of nanofibers and their effect on device performance




Nanostructured Zinc Oxide


Book Description

Nanostructured Zinc Oxide covers the various routes for the synthesis of different types of nanostructured zinc oxide including; 1D (nanorods, nanowires etc.), 2D and 3D (nanosheets, nanoparticles, nanospheres etc.). This comprehensive overview provides readers with a clear understanding of the various parameters controlling morphologies. The book also reviews key properties of ZnO including optical, electronic, thermal, piezoelectric and surface properties and techniques in order to tailor key properties. There is a large emphasis in the book on ZnO nanostructures and their role in optoelectronics. ZnO is very interesting and widely investigated material for a number of applications. This book presents up-to-date information about the ZnO nanostructures-based applications such as gas sensing, pH sensing, photocatalysis, antibacterial activity, drug delivery, and electrodes for optoelectronics. - Reviews methods to synthesize, tailor, and characterize 1D, 2D, and 3D zinc oxide nanostructured materials - Discusses key properties of zinc oxide nanostructured materials including optical, electronic, thermal, piezoelectric, and surface properties - Addresses most relevant zinc oxide applications in optoelectronics such as light-emitting diodes, solar cells, and sensors




Titanium Dioxide (TiO2) and Its Applications


Book Description

Scientific interest in TiO2-based materials has exponentially grown in the last few decades. Titanium Dioxide (TiO2) and Its Applications introduces the main physicochemical properties of TiO2 which are the basis of its applications in various fields. While the basic principles of the TiO2 properties have been the subject of various previous publications, this book is mainly devoted to TiO2 applications. The book includes contributions written by experts from a wide range of disciplines in order to address titanium dioxide's utilization in energy, consumer, materials, devices, and catalytic applications. The various applications identified include: photocatalysis, catalysis, optics, electronics, energy storage and production, ceramics, pigments, cosmetics, sensors, and heat transfer. Titanium Dioxide (TiO2) and Its Applications is suitable for a wide readership in the disciplines of materials science, chemistry, and engineering in both academia and industry. - Includes a wide range of current and emerging applications of titanium dioxide in the fields of energy, consumer applications, materials, and devices - Provides a brief overview of titanium dioxide and its properties, as well as techniques to design, deposit, and study the material - Discusses the relevant properties, preparation methods, and other apposite considerations in each application-focused chapter




Nanostructured Multifunctional Materials


Book Description

The development of nanomaterials plays a fundamental role in current and future technology applications, particularly nanomaterials that have multiple functionalities. This book provides a broad overview of the effect of nanostructuring in the multifunctionality of different widely studied nanomaterials. This book is divided into four sections constituting a road map that groups materials sharing certain types of nanostructuring, including nanoporous, nanoparticled, 2D laminar nanomaterials, and computational methods for characterizations of nanostructures. This structured approach in nanomaterials research will serve as a valuable reference material for chemists, (bio)engineers, physicists, nanotechnologists, undergraduates, and professors.




Functional Metal Oxide Nanostructures


Book Description

Metal oxides and particularly their nanostructures have emerged as animportant class of materials with a rich spectrum of properties and greatpotential for device applications. In this book, contributions from leadingexperts emphasize basic physical properties, synthesis and processing, and thelatest applications in such areas as energy, catalysis and data storage. Functional Metal Oxide Nanostructuresis an essential reference for any materials scientist or engineer with aninterest in metal oxides, and particularly in recent progress in defectphysics, strain effects, solution-based synthesis, ionic conduction, and theirapplications.




Metal Oxides and Related Solids for Electrocatalytic Water Splitting


Book Description

Metal Oxides and Related Solids for Electrocatalytic Water Splitting reviews the fundamentals and strategies needed to design and fabricate metal oxide-based electrocatalysts. After an introduction to the key properties of transition metal oxides, materials engineering methods to optimize the performance of metal-oxide based electrocatalysts are discussed. Strategies reviewed include defect engineering, interface engineering and doping engineering. Other sections cover important categories of metal-oxide (and related solids) based catalysts, including layered hydroxides, metal chalcogenides, metal phosphides, metal nitrides, metal borides, and more. Each chapter introduces important properties and material design strategies, including composite and morphology design. There is also an emphasis on cost-effective materials design and fabrication for optimized performance for electrocatalytic water splitting applications. Lastly, the book touches on recently developed in-situ characterization methods applied to observe and control the material synthesis process. - Introduces metal oxide-based materials for electrocatalytic water splitting applications, including their key properties, synthesis, design and fabrication strategies - Reviews the most relevant materials design strategies, including defect engineering, interface engineering, and doping engineering - Discusses the pros and cons of metal oxide-based materials for water splitting applications to aid in materials selection