Multigrid Direct Numerical Simulation of the Whole Process of Flow Transition in 3-D Boundary Layers


Book Description

A new technology was developed in this study which provides a successful numerical simulation of the whole process of flow transition in 3-D boundary layers, including linear growth, secondary instability, breakdown, and transition at relatively low CPU cost. Most other spatial numerical simulations require high CPU cost and blow up at the stage of flow breakdown. A fourth-order finite difference scheme on stretched and staggered grids, a fully implicit time marching technique, a semi-coarsening multigrid based on the so-called approximate line-box relaxation, and a buffer domain for the outflow boundary conditions were all used for high-order accuracy, good stability, and fast convergence. A new fine-coarse-fine grid mapping technique was developed to keep the code running after the laminar flow breaks down. The computational results are in good agreement with linear stability theory, secondary instability theory, and some experiments. The cost for a typical case with 162 x 34 x 34 grid is around 2 CRAY-YMP CPU hours for 10 T-S periods. Liu, Chaoqun and Liu, Zhining Glenn Research Center NAS1-10312; NCC3-233; RTOP 505-90-5K...




Computational Fluid Dynamics Review 1998 (In 2 Volumes)


Book Description

The first volume of CFD Review was published in 1995. The purpose of this new publication is to present comprehensive surveys and review articles which provide up-to-date information about recent progress in computational fluid dynamics, on a regular basis. Because of the multidisciplinary nature of CFD, it is difficult to cope with all the important developments in related areas. There are at least ten regular international conferences dealing with different aspects of CFD.It is a real challenge to keep up with all these activities and to be aware of essential and fundamental contributions in these areas. It is hoped that CFD Review will help in this regard by covering the state-of-the-art in this field.The present book contains sixty-two articles written by authors from the US, Europe, Japan and China, covering the main aspects of CFD. There are five sections: general topics, numerical methods, flow physics, interdisciplinary applications, parallel computation and flow visualization. The section on numerical methods includes grids, schemes and solvers, while that on flow physics includes incompressible and compressible flows, hypersonics and gas kinetics as well as transition and turbulence. This book should be useful to all researchers in this fast-developing field.
















Liutex and Third Generation of Vortex Definition and Identification


Book Description

This book collects papers presented in the Invited Workshop, “Liutex and Third Generation of Vortex Definition and Identification for Turbulence,” from CHAOS2020, June 9-12, 2020, which was held online as a virtual conference. Liutex is a new physical quantity introduced by Prof. Chaoqun Liu of the University of Texas at Arlington. It is a vector and could give a unique and accurate mathematical definition for fluid rotation or vortex. The papers in this volume include some Liutex theories and many applications in hydrodynamics, aerodynamics and thermal dynamics including turbine machinery. As vortex exists everywhere in the universe, a mathematical definition of vortex or Liutex will play a critical role in scientific research. There is almost no place without vortex in fluid dynamics. As a projection, the Liutex theory will play an important role on the investigations of the vortex dynamics in hydrodynamics, aerodynamics, thermodynamics, oceanography, meteorology, metallurgy, civil engineering, astronomy, biology, etc. and to the researches of the generation, sustenance, modelling and controlling of turbulence.




New Perspectives in Fluid Dynamics


Book Description

This book contains five chapters detailing significant advances in and applications of new turbulence theory and fluid dynamics modeling with a focus on wave propagation from arbitrary depths to shallow waters, computational modeling for predicting optical distortions through hypersonic flow fields, wind strokes over highway bridges, optimal crop production in a greenhouse, and technological appliance and performance concerns in wheelchair racing. We hope this book to be a useful resource to scientists and engineers who are interested in the fundamentals and applications of fluid dynamics.