Multihazard Considerations in Civil Infrastructure


Book Description

This book explains and presents the need for Multihazard Consideration (MH) in the management of civil infrastructure, what constitutes MH, and how to address MH in design and analysis. A generalized theory of MH will serve as the basis of the objective treatment of this volume. Use of MH in bridge management (inspection, maintenance, rehabilitation, and replacement) will serve as the basis for several examples, and numerous case studies will be presented throughout.




Multi-hazard Approaches to Civil Infrastructure Engineering


Book Description

This collection focuses on the development of novel approaches to address one of the most pressing challenges of civil engineering, namely the mitigation of natural hazards. Numerous engineering books to date have focused on, and illustrate considerable progress toward, mitigation of individual hazards (earthquakes, wind, and so forth.). The current volume addresses concerns related to overall safety, sustainability and resilience of the built environment when subject to multiple hazards: natural disaster events that are concurrent and either correlated (e.g., wind and surge); uncorrelated (e.g., earthquake and flood); cascading (e.g., fire following earthquake); or uncorrelated and occurring at different times (e.g., wind and earthquake). The authors examine a range of specific topics including methodologies for vulnerability assessment of structures, new techniques to reduce the system demands through control systems; instrumentation, monitoring and condition assessment of structures and foundations; new techniques for repairing structures that have suffered damage during past events, or for structures that have been found in need of strengthening; development of new design provisions that consider multiple hazards, as well as questions from law and the humanities relevant to the management of natural and human-made hazards.




Risk Management in Civil Infrastructure


Book Description

This book presents several original theories for risk, including Theory of Risk Monitoring, and Theory of Risk Acceptance, in addition to several analytical models for computing relative and absolute risk. The book discusses risk limit, states of risk, and the emerging concept of risk monitoring. The interrelationships between risk and resilience are also highlighted in an objective manner. The book includes several practical case studies showing how risk management and its components can be used to enhance performance of infrastructures at reasonable costs.




Infrastructure Health in Civil Engineering


Book Description

Continually increasing demands on infrastructures mean that maintenance and renewal require timely, appropriate action that maximizes benefits while minimizing cost. To be as well informed as possible, decision-makers must have an optimal understanding of an infrastructure’s condition—what it is now, and what it is expected to be in the future. Written by two highly respected engineers, the second volume, Infrastructure Health in Civil Engineering: Applications and Management, integrates the decision making concept into theoretical and practical issues. It covers: State-of-the-art practice and future directions Use of probability and statistics in areas including structural modeling Specific practical applications, including retrofitting and rehabilitation in response to earthquake damage, corrosion, fatigue, and bridge security Use of IHCE for management and maintenance of different types of structures using pre-stressed and reinforced concrete, and fiber-reinforced polymers (FRPs) Numerous practical case studies, as well as coverage of the latest techniques in the use of sensors for damage detection and load testing Built to correspond to the ideas presented in its companion volume, Theory and Components, this is an invaluable guide to optimized, cost-saving methods that will help readers meet safety specifications for new projects, as well as the aging infrastructure at great risk of failure.




Infrastructure Health in Civil Engineering (Two-Volume Set)


Book Description

This two-volume set discusses the importance of linking the decision making concept to damage identification and structural modeling. It examines the process of addressing and maintaining structural health, including measurements, structural identification, and damage identification and discusses the theoretical and practical issues involved for each aspect. Emphasizing state-of-the-art practice as well as future directions, this text also features numerous practical case studies and covers the latest techniques in sensing and sensor utilization.




Life-Cycle Civil Engineering: Innovation, Theory and Practice


Book Description

Life-Cycle Civil Engineering: Innovation, Theory and Practice contains the lectures and papers presented at IALCCE2020, the Seventh International Symposium on Life-Cycle Civil Engineering, held in Shanghai, China, October 27-30, 2020. It consists of a book of extended abstracts and a USB card containing the full papers of 230 contributions, including the Fazlur R. Khan lecture, eight keynote lectures, and 221 technical papers from all over the world. All major aspects of life-cycle engineering are addressed, with special emphasis on life-cycle design, assessment, maintenance and management of structures and infrastructure systems under various deterioration mechanisms due to various environmental hazards. It is expected that the proceedings of IALCCE2020 will serve as a valuable reference to anyone interested in life-cycle of civil infrastructure systems, including students, researchers, engineers and practitioners from all areas of engineering and industry.




Inspection, Evaluation and Maintenance of Suspension Bridges


Book Description

Guidance on Protecting and Extending the Life of Suspension BridgesSuspension bridges are graceful, aesthetic, and iconic structures. Due to their attractiveness and visibility, they are well-known symbols of major cities and countries in the world. They are also an essential form of transportation infrastructure built across large bodies of water.




Reliability Engineering


Book Description

Get a firm handle on the engineering reliability process with this insightful and complete resource Named one of the Best Industrial Management eBooks of All Time by BookAuthority As featured on CNN, Forbes and Inc – BookAuthority identifies and rates the best books in the world, based on recommendations by thought leaders and experts The newly and thoroughly revised 3rd Edition of Reliability Engineering delivers a comprehensive and insightful analysis of this crucial field. Accomplished author, professor, and engineer, Elsayed. A. Elsayed includes new examples and end-of-chapter problems to illustrate concepts, new chapters on resilience and the physics of failure, revised chapters on reliability and hazard functions, and more case studies illustrating the approaches and methodologies described within. The book combines analyses of system reliability estimation for time independent and time dependent models with the construction of the likelihood function and its use in estimating the parameters of failure time distribution. It concludes by addressing the physics of failures, mechanical reliability, and system resilience, along with an explanation of how to ensure reliability objectives by providing preventive and scheduled maintenance and warranty policies. This new edition of Reliability Engineering covers a wide range of topics, including: Reliability and hazard functions, like the Weibull Model, the Exponential Model, the Gamma Model, and the Log-Logistic Model, among others System reliability evaluations, including parallel-series, series-parallel, and mixed parallel systems The concepts of time- and failure-dependent reliability within both repairable and non-repairable systems Parametric reliability models, including types of censoring, and the Exponential, Weibull, Lognormal, Gamma, Extreme Value, Half-Logistic, and Rayleigh Distributions Perfect for first-year graduate students in industrial and systems engineering, Reliability Engineering, 3rd Edition also belongs on the bookshelves of practicing professionals in research laboratories and defense industries. The book offers a practical and approachable treatment of a complex area, combining the most crucial foundational knowledge with necessary and advanced topics.




ADVANCES IN MECHANICS AND MATERIALS


Book Description

Veer Surendra Sai University of Technology (VSSUT), Burla is one among the foremost universities of India in the field of higher education, basic and applied research. The foundation of this iconic college was laid in 1956 to cater the maintenance and upkeep of the mighty Hirakud Dam (worlds longest earth dam) at Burla. The university now has sixteen academic departments ion various disciplines in engineering and sciences. The International Conference on Advances in Mechanics and Materials (ICRAMM-2016), was organized at the Veer Surendra Sai University of Technology, Burla, Odisha during 17-18 December, 2016. Over the years, tremendous progress has been made in the fields related to mechanics and materials due to rapid advancements in analytical, experimental and computational facilities. The outcome has immensely benefited the industries, research and academic organizations in numerous ways. The International Conference on Recent Advances in Mechanics and Materials (ICRAMM-2016) will provide a common platform for academicians, engineers, scientists and technologists to come together and discuss the progress made on various aspects of mechanics and materials. Realizing the importance of recent developments in the areas of recent advances in mechanics and materials, the conference ICRAMM 2016, focuses on following major themes: Computational mechanics, Experimental mechanics, Fluid mechanics, Geomechanics, Structural mechanics, Continuum mechanics, Coupled field problems, Structural and Soil Dynamics, Vibration Control, Structural Health Monitoring, Rehabilitation and Retrofitting of structures, Composite Materials, Cement Concrete Composites and Sustainable construction materials. The papers included in this conference proceeding reflect in general the need for emerging technologies and growing interest in structural mechanics and materials to tailor it to meet the requirements for the varying application.




Multihazard Considerations in Civil Infrastructure


Book Description

This book explains and presents the need for Multihazard Consideration (MH) in the management of civil infrastructure, what constitutes MH, and how to address MH in design and analysis. A generalized theory of MH will serve as the basis of the objective treatment of this volume. Use of MH in bridge management (inspection, maintenance, rehabilitation, and replacement) will serve as the basis for several examples, and numerous case studies will be presented throughout.