Multilevel and Longitudinal Modeling with IBM SPSS


Book Description

This book demonstrates how to use multilevel and longitudinal modeling techniques available in the IBM SPSS mixed-effects program (MIXED). Annotated screen shots provide readers with a step-by-step understanding of each technique and navigating the program. Readers learn how to set up, run, and interpret a variety of models. Diagnostic tools, data management issues, and related graphics are introduced throughout. Annotated syntax is also available for those who prefer this approach. Extended examples illustrate the logic of model development to show readers the rationale of the research questions and the steps around which the analyses are structured. The data used in the text and syntax examples are available at www.routledge.com/9780415817110. Highlights of the new edition include: Updated throughout to reflect IBM SPSS Version 21. Further coverage of growth trajectories, coding time-related variables, covariance structures, individual change and longitudinal experimental designs (Ch.5). Extended discussion of other types of research designs for examining change (e.g., regression discontinuity, quasi-experimental) over time (Ch.6). New examples specifying multiple latent constructs and parallel growth processes (Ch. 7). Discussion of alternatives for dealing with missing data and the use of sample weights within multilevel data structures (Ch.1). The book opens with the conceptual and methodological issues associated with multilevel and longitudinal modeling, followed by a discussion of SPSS data management techniques which facilitate working with multilevel, longitudinal, and cross-classified data sets. Chapters 3 and 4 introduce the basics of multilevel modeling: developing a multilevel model, interpreting output, and trouble-shooting common programming and modeling problems. Models for investigating individual and organizational change are presented in chapters 5 and 6, followed by models with multivariate outcomes in chapter 7. Chapter 8 provides an illustration of multilevel models with cross-classified data structures. The book concludes with ways to expand on the various multilevel and longitudinal modeling techniques and issues when conducting multilevel analyses. It's ideal for courses on multilevel and longitudinal modeling, multivariate statistics, and research design taught in education, psychology, business, and sociology.




Multilevel and Longitudinal Modeling with IBM SPSS


Book Description

This book demonstrates how to use multilevel and longitudinal modeling techniques available in the IBM SPSS mixed-effects program (MIXED). Annotated screen shots provide readers with a step-by-step understanding of each technique and navigating the program. Readers learn how to set up, run, and interpret a variety of models. Diagnostic tools, data management issues, and related graphics are introduced throughout. Annotated syntax is also available for those who prefer this approach. Extended examples illustrate the logic of model development to show readers the rationale of the research questions and the steps around which the analyses are structured. The data used in the text and syntax examples are available at www.routledge.com/9780415817110. Highlights of the new edition include: Updated throughout to reflect IBM SPSS Version 21. Further coverage of growth trajectories, coding time-related variables, covariance structures, individual change and longitudinal experimental designs (Ch.5). Extended discussion of other types of research designs for examining change (e.g., regression discontinuity, quasi-experimental) over time (Ch.6). New examples specifying multiple latent constructs and parallel growth processes (Ch. 7). Discussion of alternatives for dealing with missing data and the use of sample weights within multilevel data structures (Ch.1). The book opens with the conceptual and methodological issues associated with multilevel and longitudinal modeling, followed by a discussion of SPSS data management techniques which facilitate working with multilevel, longitudinal, and cross-classified data sets. Chapters 3 and 4 introduce the basics of multilevel modeling: developing a multilevel model, interpreting output, and trouble-shooting common programming and modeling problems. Models for investigating individual and organizational change are presented in chapters 5 and 6, followed by models with multivariate outcomes in chapter 7. Chapter 8 provides an illustration of multilevel models with cross-classified data structures. The book concludes with ways to expand on the various multilevel and longitudinal modeling techniques and issues when conducting multilevel analyses. It's ideal for courses on multilevel and longitudinal modeling, multivariate statistics, and research design taught in education, psychology, business, and sociology.




Multilevel and Longitudinal Modeling with IBM SPSS


Book Description

This is the first book to demonstrate how to use the multilevel and longitudinal modeling techniques available in IBM SPSS Version 18. The authors tap the power of SPSS''s Mixed Models routine to provide an elegant and accessible approach to these models. Readers who have learned statistics using this software will no longer have to adapt to a new program to conduct quality multilevel and longitudinal analyses. Annotated screen shots with all of the key output provide readers with a step-by-step understanding of each technique as they are shown how to navigate through the program. Diagnostic tools, data management issues, and related graphics are introduced throughout. SPSS commands show the flow of the menu structure and how to facilitate model building. Annotated syntax is also available for those who prefer this approach. Most chapters feature an extended example illustrating the logic of model development. These examples show readers the context and rationale of the research questions and the steps around which the analyses are structured. The data used in the text and syntax examples are available at http://www.psypress.com/multilevel-modeling-techniques/ . The book opens with the conceptual and methodological issues associated with multilevel and longitudinal modeling, followed by a discussion of SPSS data management techniques which facilitate working with multilevel, longitudinal, and/or cross-classified data sets. The next few chapters introduce the basics of multilevel modeling, how to develop a multilevel model, and trouble-shooting techniques for common programming and modeling problems along with potential solutions. Models for investigating individual and organizational change are developed in chapters 5 and 6, followed by models with multivariate outcomes in chapter 7. Chapter 8 illustrates SPSS''s facility for examining models with cross-classified data structures. The book concludes with thoughts about ways to expand on the various multilevel and longitudinal modeling techniques introduced and issues to keep in mind in conducting multilevel analyses. Ideal as a supplementary text for graduate level courses on multilevel, longitudinal, latent variable modeling, multivariate statistics, and/or advanced quantitative techniques taught in departments of psychology, business, education, health, and sociology, this book''s practical approach will also appeal to researchers in these fields. The book provides an excellent supplement to Heck & Thomas''s An Introduction to Multilevel Modeling Techniques, 2nd Edition; however, it can also be used with any multilevel and/or longitudinal modeling book or as a stand-alone text. ps around which the analyses are structured. The data used in the text and syntax examples are available at http://www.psypress.com/multilevel-modeling-techniques/ . The book opens with the conceptual and methodological issues associated with multilevel and longitudinal modeling, followed by a discussion of SPSS data management techniques which facilitate working with multilevel, longitudinal, and/or cross-classified data sets. The next few chapters introduce the basics of multilevel modeling, how to develop a multilevel model, and trouble-shooting techniques for common programming and modeling problems along with potential solutions. Models for investigating individual and organizational change are developed in chapters 5 and 6, followed by models with multivariate outcomes in chapter 7. Chapter 8 illustrates SPSS''s facility for examining models with cross-classified data structures. The book concludes with thoughts about ways to expand on the various multilevel and longitudinal modeling techniques introduced and issues to keep in mind in conducting multilevel analyses. Ideal as a supplementary text for graduate level courses on multilevel, longitudinal, latent variable modeling, multivariate statistics, and/or advanced quantitative techniques taught in departments of psychology, business, education, health, and sociology, this book''s practical approach will also appeal to researchers in these fields. The book provides an excellent supplement to Heck & Thomas''s An Introduction to Multilevel Modeling Techniques, 2nd Edition; however, it can also be used with any multilevel and/or longitudinal modeling book or as a stand-alone text. techniques introduced and issues to keep in mind in conducting multilevel analyses. Ideal as a supplementary text for graduate level courses on multilevel, longitudinal, latent variable modeling, multivariate statistics, and/or advanced quantitative techniques taught in departments of psychology, business, education, health, and sociology, this book''s practical approach will also appeal to researchers in these fields. The book provides an excellent supplement to Heck & Thomas''s An Introduction to Multilevel Modeling Techniques, 2nd Edition; however, it can also be used with any multilevel and/or longitudinal modeling book or as a stand-alone text.




Multilevel Modeling of Categorical Outcomes Using IBM SPSS


Book Description

This is the first workbook that introduces the multilevel approach to modeling with categorical outcomes using IBM SPSS Version 20. Readers learn how to develop, estimate, and interpret multilevel models with categorical outcomes. The authors walk readers through data management, diagnostic tools, model conceptualization, and model specification issues related to single-level and multilevel models with categorical outcomes. Screen shots clearly demonstrate techniques and navigation of the program. Modeling syntax is provided in the appendix. Examples of various types of categorical outcomes demonstrate how to set up each model and interpret the output. Extended examples illustrate the logic of model development, interpretation of output, the context of the research questions, and the steps around which the analyses are structured. Readers can replicate examples in each chapter by using the corresponding data and syntax files available at www.psypress.com/9781848729568. The book opens with a review of multilevel with categorical outcomes, followed by a chapter on IBM SPSS data management techniques to facilitate working with multilevel and longitudinal data sets. Chapters 3 and 4 detail the basics of the single-level and multilevel generalized linear model for various types of categorical outcomes. These chapters review underlying concepts to assist with trouble-shooting common programming and modeling problems. Next population-average and unit-specific longitudinal models for investigating individual or organizational developmental processes are developed. Chapter 6 focuses on single- and multilevel models using multinomial and ordinal data followed by a chapter on models for count data. The book concludes with additional trouble shooting techniques and tips for expanding on the modeling techniques introduced. Ideal as a supplement for graduate level courses and/or professional workshops on multilevel, longitudinal, latent variable modeling, multivariate statistics, and/or advanced quantitative techniques taught in psychology, business, education, health, and sociology, this practical workbook also appeals to researchers in these fields. An excellent follow up to the authors’ highly successful Multilevel and Longitudinal Modeling with IBM SPSS and Introduction to Multilevel Modeling Techniques, 2nd Edition, this book can also be used with any multilevel and/or longitudinal book or as a stand-alone text introducing multilevel modeling with categorical outcomes.




Hierarchical Linear Modeling


Book Description

This book provides a brief, easy-to-read guide to implementing hierarchical linear modeling using three leading software platforms, followed by a set of original how-to applications articles following a standardard instructional format. The "guide" portion consists of five chapters by the editor, providing an overview of HLM, discussion of methodological assumptions, and parallel worked model examples in SPSS, SAS, and HLM software. The "applications" portion consists of ten contributions in which authors provide step by step presentations of how HLM is implemented and reported for introductory to intermediate applications.




Multilevel Modeling in Plain Language


Book Description

Have you been told you need to do multilevel modeling, but you can′t get past the forest of equations? Do you need the techniques explained with words and practical examples so they make sense? Help is here! This book unpacks these statistical techniques in easy-to-understand language with fully annotated examples using the statistical software Stata. The techniques are explained without reliance on equations and algebra so that new users will understand when to use these approaches and how they are really just special applications of ordinary regression. Using real life data, the authors show you how to model random intercept models and random coefficient models for cross-sectional data in a way that makes sense and can be retained and repeated. This book is the perfect answer for anyone who needs a clear, accessible introduction to multilevel modeling.




Multilevel Modeling


Book Description

Multilevel Modeling: Applications in STATA®, IBM® SPSS®, SAS®, R & HLMTM provides a gentle, hands-on illustration of the most common types of multilevel modeling software, offering instructors multiple software resources for their students and an applications-based foundation for teaching multilevel modeling in the social sciences. Author G. David Garson’s step-by-step instructions for software walk readers through each package. The instructions for the different platforms allow students to get a running start using the package with which they are most familiar while the instructor can start teaching the concepts of multilevel modeling right away. Instructors will find this text serves as both a comprehensive resource for their students and a foundation for their teaching alike.




Intensive Longitudinal Methods


Book Description

This book offers a complete, practical guide to doing an intensive longitudinal study with individuals, dyads, or groups. It provides the tools for studying social, psychological, and physiological processes in everyday contexts, using methods such as diary and experience sampling. A range of engaging, worked-through research examples with datasets are featured. Coverage includes how to: select the best intensive longitudinal design for a particular research question, apply multilevel models to within-subject designs, model within-subject change processes for continuous and categorical outcomes, assess the reliability of within-subject changes, assure sufficient statistical power, and more. Several end-of-chapter write-ups illustrate effective ways to present study findings for publication. Datasets and output in SPSS, SAS, Mplus, HLM, MLwiN, and R for the examples are available on the companion website (www.intensivelongitudinal.com).




An Introduction to Multilevel Modeling Techniques


Book Description

Multilevel modelling is a data analysis method that is frequently used to investigate hierarchal data structures in educational, behavioural, health, and social sciences disciplines. Multilevel data analysis exploits data structures that cannot be adequately investigated using single-level analytic methods such as multiple regression, path analysis, and structural modelling. This text offers a comprehensive treatment of multilevel models for univariate and multivariate outcomes. It explores their similarities and differences and demonstrates why one model may be more appropriate than another, given the research objectives. -- Provided by Publisher.




Introduction to Structural Equation Modelling Using SPSS and Amos


Book Description

Introduction to Structural Equation Modelling using SPSS and AMOS is a complete guide to carrying out your own structural equation modelling project. Assuming no previous experience of the subject, and a minimum of mathematical knowledge, this is the ideal guide for those new to structural equation modelling (SEM). Each chapter begins with learning objectives, and ends with a list of the new concepts introduced and questions to open up further discussion. Exercises for each chapter, incuding the necessary data, can be downloaded from the book′s website. Helpful real life examples are included throughout, drawing from a wide range of disciplines including psychology, political science, marketing and health. Introduction to Structural Equation Modelling using SPSS and AMOS provides engaging and accessible coverage of all the basics necessary for using SEM, making it an invaluable companion for students taking introductory SEM courses in any discipline.