Book Description
This book, first published in 2007, is for the applied researcher performing data analysis using linear and nonlinear regression and multilevel models.
Author : Andrew Gelman
Publisher : Cambridge University Press
Page : 654 pages
File Size : 11,53 MB
Release : 2007
Category : Mathematics
ISBN : 9780521686891
This book, first published in 2007, is for the applied researcher performing data analysis using linear and nonlinear regression and multilevel models.
Author : Kevin J. Grimm
Publisher : Guilford Publications
Page : 558 pages
File Size : 48,65 MB
Release : 2016-10-17
Category : Social Science
ISBN : 1462526063
Growth models are among the core methods for analyzing how and when people change. Discussing both structural equation and multilevel modeling approaches, this book leads readers step by step through applying each model to longitudinal data to answer particular research questions. It demonstrates cutting-edge ways to describe linear and nonlinear change patterns, examine within-person and between-person differences in change, study change in latent variables, identify leading and lagging indicators of change, evaluate co-occurring patterns of change across multiple variables, and more. User-friendly features include real data examples, code (for Mplus or NLMIXED in SAS, and OpenMx or nlme in R), discussion of the output, and interpretation of each model's results. User-Friendly Features *Real, worked-through longitudinal data examples serving as illustrations in each chapter. *Script boxes that provide code for fitting the models to example data and facilitate application to the reader's own data. *"Important Considerations" sections offering caveats, warnings, and recommendations for the use of specific models. *Companion website supplying datasets and syntax for the book's examples, along with additional code in SAS/R for linear mixed-effects modeling.
Author : Karen Robson
Publisher : SAGE
Page : 153 pages
File Size : 15,60 MB
Release : 2015-11-02
Category : Social Science
ISBN : 1473934303
Have you been told you need to do multilevel modeling, but you can′t get past the forest of equations? Do you need the techniques explained with words and practical examples so they make sense? Help is here! This book unpacks these statistical techniques in easy-to-understand language with fully annotated examples using the statistical software Stata. The techniques are explained without reliance on equations and algebra so that new users will understand when to use these approaches and how they are really just special applications of ordinary regression. Using real life data, the authors show you how to model random intercept models and random coefficient models for cross-sectional data in a way that makes sense and can be retained and repeated. This book is the perfect answer for anyone who needs a clear, accessible introduction to multilevel modeling.
Author : Douglas A. Luke
Publisher : SAGE Publications
Page : 96 pages
File Size : 25,45 MB
Release : 2019-12-13
Category : Social Science
ISBN : 1544310285
Multilevel Modeling is a concise, practical guide to building models for multilevel and longitudinal data. Author Douglas A. Luke begins by providing a rationale for multilevel models; outlines the basic approach to estimating and evaluating a two-level model; discusses the major extensions to mixed-effects models; and provides advice for where to go for instruction in more advanced techniques. Rich with examples, the Second Edition expands coverage of longitudinal methods, diagnostic procedures, models of counts (Poisson), power analysis, cross-classified models, and adds a new section added on presenting modeling results. A website for the book includes the data and the statistical code (both R and Stata) used for all of the presented analyses.
Author : Harvey Goldstein
Publisher : Hodder Education
Page : 178 pages
File Size : 34,75 MB
Release : 1995
Category : Technology & Engineering
ISBN : 9780340595299
The basic linear multilevel model and its estimation - Extensions to the basic multilevel model - The multivariate multilevel model - Nonlinear multilevel models - Models for repeated meadures data - Multilevel models for discrete response data - Multilevel cross classification - Multilevel event history models - Multilevel models with measurement errors - Software for multilevel modelling; missing data and multilevel structural equation models.
Author : Ita G G Kreft
Publisher : SAGE
Page : 164 pages
File Size : 27,64 MB
Release : 1998-04-07
Category : Social Science
ISBN : 9781446230923
This is the first accessible and practical guide to using multilevel models in social research. Multilevel approaches are becoming increasingly important in social, behavioural, and educational research and it is clear from recent developments that such models are seen as being more realistic, and potentially more revealing, than ordinary regression models. While other books describe these multilevel models in considerable detail none focuses on the practical issues and potential problems of doing multilevel analyses that are covered in Introducing Multilevel Modeling. The authors' approach is user-oriented and the formal mathematics and statistics are kept to a minimum. Other key features include the use of worked examples using real data sets, analyzed using the leading computer package for multilevel modeling - "MLn." Discussion site at: http: \www.stat.ucla.eduphplibw-agoraw-agora.phtml?bn=Sagebook Data files mentioned in the book are available from: http: \www.stat.ucla.edu deleeuwsagebook
Author : Ronald H. Heck
Publisher : Psychology Press
Page : 224 pages
File Size : 36,8 MB
Release : 1999-11
Category : Computers
ISBN : 1135678324
Multilevel modelling is a data analysis method that is frequently used to investigate hierarchal data structures in educational, behavioural, health, and social sciences disciplines. Multilevel data analysis exploits data structures that cannot be adequately investigated using single-level analytic methods such as multiple regression, path analysis, and structural modelling. This text offers a comprehensive treatment of multilevel models for univariate and multivariate outcomes. It explores their similarities and differences and demonstrates why one model may be more appropriate than another, given the research objectives. -- Provided by Publisher.
Author : Jichuan Wang
Publisher : Walter de Gruyter
Page : 275 pages
File Size : 11,72 MB
Release : 2011-12-23
Category : Mathematics
ISBN : 3110267705
Interest in multilevel statistical models for social science and public health studies has been aroused dramatically since the mid-1980s. New multilevel modeling techniques are giving researchers tools for analyzing data that have a hierarchical or clustered structure. Multilevel models are now applied to a wide range of studies in sociology, population studies, education studies, psychology, economics, epidemiology, and public health. This book covers a broad range of topics about multilevel modeling. The goal of the authors is to help students and researchers who are interested in analysis of multilevel data to understand the basic concepts, theoretical frameworks and application methods of multilevel modeling. The book is written in non-mathematical terms, focusing on the methods and application of various multilevel models, using the internationally widely used statistical software, the Statistics Analysis System (SAS®). Examples are drawn from analysis of real-world research data. The authors focus on twolevel models in this book because it is most frequently encountered situation in real research. These models can be readily expanded to models with three or more levels when applicable. A wide range of linear and non-linear multilevel models are introduced and demonstrated.
Author : W. Holmes Finch
Publisher : CRC Press
Page : 208 pages
File Size : 26,97 MB
Release : 2019-07-16
Category : Mathematics
ISBN : 1351062247
Like its bestselling predecessor, Multilevel Modeling Using R, Second Edition provides the reader with a helpful guide to conducting multilevel data modeling using the R software environment. After reviewing standard linear models, the authors present the basics of multilevel models and explain how to fit these models using R. They then show how to employ multilevel modeling with longitudinal data and demonstrate the valuable graphical options in R. The book also describes models for categorical dependent variables in both single level and multilevel data. New in the Second Edition: Features the use of lmer (instead of lme) and including the most up to date approaches for obtaining confidence intervals for the model parameters. Discusses measures of R2 (the squared multiple correlation coefficient) and overall model fit. Adds a chapter on nonparametric and robust approaches to estimating multilevel models, including rank based, heavy tailed distributions, and the multilevel lasso. Includes a new chapter on multivariate multilevel models. Presents new sections on micro-macro models and multilevel generalized additive models. This thoroughly updated revision gives the reader state-of-the-art tools to launch their own investigations in multilevel modeling and gain insight into their research. About the Authors: W. Holmes Finch is the George and Frances Ball Distinguished Professor of Educational Psychology at Ball State University. Jocelyn E. Bolin is a Professor in the Department of Educational Psychology at Ball State University. Ken Kelley is the Edward F. Sorin Society Professor of IT, Analytics and Operations and the Associate Dean for Faculty and Research for the Mendoza College of Business at the University of Notre Dame.
Author : Marc A. Scott
Publisher : SAGE
Page : 954 pages
File Size : 28,66 MB
Release : 2013-08-31
Category : Social Science
ISBN : 1473971314
In this important new Handbook, the editors have gathered together a range of leading contributors to introduce the theory and practice of multilevel modeling. The Handbook establishes the connections in multilevel modeling, bringing together leading experts from around the world to provide a roadmap for applied researchers linking theory and practice, as well as a unique arsenal of state-of-the-art tools. It forges vital connections that cross traditional disciplinary divides and introduces best practice in the field. Part I establishes the framework for estimation and inference, including chapters dedicated to notation, model selection, fixed and random effects, and causal inference. Part II develops variations and extensions, such as nonlinear, semiparametric and latent class models. Part III includes discussion of missing data and robust methods, assessment of fit and software. Part IV consists of exemplary modeling and data analyses written by methodologists working in specific disciplines. Combining practical pieces with overviews of the field, this Handbook is essential reading for any student or researcher looking to apply multilevel techniques in their own research.