Multilingual Dictionary of Nuclear Reactor Physics and Engineering


Book Description

This multilingual dictionary explains, in simple and clear language, the most frequently used terms and expressions in the field of nuclear reactor physics and engineering, and provides translations of these terms from English into French, German, Swedish and Polish. This unique resource offers many advantages over the use of online translation tools, which are often incorrect when dealing with scientific and technical words. Instead, this dictionary has used a wide variety of peer-reviewed books and journal papers to ensure the highest accuracy and establish itself as a reliable and credible reference for the reader. It covers a broad range of exciting topics and the latest developments in the field, including reactor technology, reactor components and systems, reactor operation and control, reactor types, reactor physics, thermal engineering, reactor safety, radiation protection, nuclear fuel, nuclear chemistry, the safeguarding of nuclear materials and much more. This dictionary is kept on a technical level corresponding to masters-level and PhD studies of nuclear physics and engineering. It will provide the reader with a broad understanding of the necessary information that a researcher or nuclear physicist or engineer would need to possess; therefore, it will be an invaluable resource for students within these and related disciplines. Features: Contains over 1500 key terms from the field The first book to provide translations in five languages: English, French, German, Swedish and Polish Accessible to masters-level and PhD students in addition to early career researchers in nuclear reactor physics and engineering




Thermal Safety Margins in Nuclear Reactors


Book Description

This book presents an overview of state-of-the art approaches to determine thermal safety margins in nuclear reactors. It presents both the deterministic and probabilistic aspects of thermal safety margins of nuclear reactors to facilitate the understanding of these two difficult topics at various academic levels, from undergraduates to researchers in nuclear engineering. It first sets out the theoretical background before exploring how to determine thermal safety margins in nuclear reactors, through examples, problems and advanced state-of-the-art approaches. This will help undergraduate students better understand the most fundamental aspects of nuclear reactor safety. For researchers and practitioners, this book provides a comprehensive overview of most recent achievements in the field, offering an excellent starting point to develop new methods for the assessment of the thermal safety margins. This book is written to bridge the gap between deterministic and appropriate treatment of uncertainties to assess safety margins in nuclear reactors, presenting these approaches as complementary to each other. Even though these two approaches are frequently used in parallel in real-world applications, there has been a lack of a consistent teaching approach in this area. This book is suitable for readers with a background in calculus, thermodynamics, fluid mechanics, and heat transfer. It is assumed that readers have previous exposure to such concepts as laws of thermodynamics, enthalpy, entropy, and conservation equations used in fluid mechanics and heat transfer. Key Features: Covers the theory, principles, and assessment methods of thermal safety margins in nuclear reactors whilst presenting the state-of-the-art technology in the field Combines the deterministic thermal safety considerations with a comprehensive treatment of uncertainties, offering a framework that is applicable to all current and future commercial nuclear reactor types Provides numerous examples and problems to be solved




Mathematical Methods in Physics and Engineering with Mathematica


Book Description

More than ever before, complicated mathematical procedures are integral to the success and advancement of technology, engineering, and even industrial production. Knowledge of and experience with these procedures is therefore vital to present and future scientists, engineers and technologists. Mathematical Methods in Physics and Engineering




Information Sources in Energy Technology


Book Description

Information Sources in Energy Technology presents the major sources in the field of energy technology. The book is comprised of 16 chapters that are organized into three parts. The first part covers energy in general and discusses both local and international agencies that deal with energy technology along with its primary and secondary sources. The next part deals with fuel technology; this part details combustion, steam and boiler plant, electrical energy, and energy conservation. The last part talks about specific energy sources, including nuclear, solar, and geothermal. The text will be of great use to individuals involved in energy industry. Scientists and engineers involved in energy projects will also benefit from the book.










Journal


Book Description




Nuclear Engineering


Book Description