Multiobjective Optimization of Natural Gas Transportation Networks


Book Description

The optimization of a natural gas transportation network (NGTN) is typically a multiobjective optimization problem, involving for instance energy consumption minimization at the compressor stations and gas delivery maximization. However, very few works concerning multiobjective optimization of gas pipelines networks are reported in the literature. Thereby, this book aims at providing a general framework of formulation and resolution of multiobjective optimization problems related to NGTN. Firstly, the NGTN model is described. Then, various multiobjective optimization techniques belonging to two main classes, scalarization and evolutionary, commonly used for engineering purposes, are presented. The non dominated solutions are displayed in the form of a Pareto front. Finally, in the multiobjective cases, generic Multiple Choice Decision Making tools are implemented to identify the best solution among the ones displayed of the Pareto fronts.







Optimization of Natural Gas Distribution in Pipeline Networks


Book Description

In natural gas pipeline transportation systems, network operators play a crucial role. Through compression power and pipeline geometry, they master the physics of the systems, allowing them to control the flow of gas between two points. Their decisions impact the entire production chain, from the suppliers to the consumers. Consequently, the management of pipeline systems requires an in-depth analysis of the influence of each decision. Each pressure change in the system may seriously impact the flow of natural gas, deeply modifying the revenue of the entire production and how it is divided between the different actors of the market. It is fundamental to understand how to master the system in order to control the money generated.From an economic point of view, natural gas pipeline production, transportation and sale creates wealth divided between the different actors in the sector: the profit of the producer, the consumer welfare and a combination of both for the network operator. This social wealth, should be maximized in order to generate the most benefit from the network for society. In order to do so, it is necessary to understand how much gas is flowing through each pipeline. If pressure values are fixed on an arbitrary basis, the dispatch of natural gas in the network will not be optimized. The loss of social wealth generated can be considerable given the important volumes transported through pipeline those days. In the market of natural gas transportation, if the pressure at the nodes is wrongly chosen, it could be disastrous for a company. How could any producing/transporting company avoid wasting this significant amount of money? What are the solutions available for the natural gas pipeline engineers to dispatch natural gas in order to maximize the social wealth generated?This issue can be stated in the corresponding two situations: For the construction of a new pipeline network, how should the geometry of the different pipes be chosen in order to transport natural gas in an optimal way? For an existing pipeline network, how should the pressure drops be chosen to maximize the social wealth of the producing/transporting company?The goal of this study is to provide network operators with the parameters to answer those situations. By fixing the pressure values at the nodes of the system, it is possible to maximize the economic value generated by the natural gas transportation and sales. Additionally, running the simulation on different natural gas network configurations = inform the company on how to choose the ideal geometry factors of each branch of pipeline.Midthun et al. (2009) suggested two different methods to address this problem. The first one, the Independent Static Flow (ISF) method is a straightforward way to find a solution. Neglecting the physics of natural gas, this method assumes that every pipe of the system is running at maximum capacity. The method is very easy to use and implement. Nevertheless, the solution provided is unrealistic: as the physics of natural gas is not respected, it is impossible to practically apply the method on a real network. Hence, this method can only be used to give an idea of how to regulate the flows, and an operator could only try to guess the pressure values at the nodes that could help to get closer this ideal situation on his network. The loss of economic value of natural gas from the arbitrary choices of the operator is a concern. Additionally, the solution arbitrary applied by the operator will generate far less social wealth than the ideal solution given through ISF Method due to the application of the physics of natural gas transportation.To address this issue, the second method proposed by Midthun et al. (2009), the Taylor Development Method, relies on an approximation of the underlying physics to solve for the optimal solution. In order to improve the relevance of the results to the constraints of the pipeline network, Midthun et al. decided to modify the nonlinear constraints of the system, .However, the accuracy of this approach has a price: the more accurate the solution, the more computationally difficult the optimization becomes. Figure 1: The fragile optimum for the Taylor Development MethodFigure 1 illustrates this complex choice. Thus, the user remains struggled in a compromise to find the right equilibrium between quality of the result and time (and so money) of computation. The situation is even worse for large network, as the number of constraining equations greatly increases for each additional pipeline on a network.This compromise between size of network/quality of results on one hand and computational feasibility on the other hand cannot be satisfying. Today, natural gas companies have to deal with networks of several hundred of pipes. An accurate solution would be too hard to solve for, and decreasing the accuracy expectations may cause a large waste of social wealth. In order to avoid this loss, this paper is suggesting another method, based on Ayala et. al.'s (2013) Linear-Pressure Analog Method. Instead of adding extra constraining equations to take account for the nonlinearities of natural gas physics, it is possible to simplify the system. Assuming a linear relationship between natural gas flow rate with respect to pressure drop, the system become smaller and easier to solve. In other words, physics of natural gas is assumed to be similar to the one of laminar liquid flows. From here, a correction is applied to the solution found, taking account for the nonlinearities inherent in real natural gas behavior. The process is iterated until convergence is reached. This method is both feasible and accurate with limited computational demands. Consequently, with any standard computer, a production/transportation company can obtain the ideal and realistic dispatch of natural gas in its network, and optimize the economic value generated by its natural gas transportation.




Evaluating Gas Network Capacities


Book Description

"This book deals with a simple sounding question whether a certain amount of gas can be transported by a given pipeline network. While well studied for a single pipeline, this question gets extremely difficult if we consider a meshed nation wide gas transportation network, taking into account all the technical details and discrete decisions, as well as regulations, contracts, and varying demand. This book describes several mathematical models to answer these questions, discusses their merits and disadvantages, explains the necessary technical and regulatory background, and shows how to solve this question using sophisticated mathematical optimization algorithms."--




Optimization Problems in Natural Gas Transportation Systems. A State-of-the-art Review


Book Description

Our paper provides a review on the most relevant research works conducted to solve natural gas transportation problems via pipeline systems. The literature reveals three major groups of gas pipeline systems, namely gathering, transmission, and distribution systems. In this work, we aim at presenting a detailed discussion of the efforts made in optimizing natural gas transmission lines. There is certainly a vast amount of research done over the past few years on many decision-making problems in the natural gas industry and, specifically, in pipeline network optimization. In this work, we present a state-of-the-art survey focusing on specific categories that include short-term basis storage (line-packing problems), gas quality satisfaction (pooling problems), and compressor station modeling (fuel cost minimization problems). We also discuss both steady-state and transient optimization models highlighting the modeling aspects and the most relevant solution approaches known to date. Although the literature on natural gas transmission system problems is quite extensive, this is, to the best of our knowledge, the first comprehensive review or survey covering this specific research area on natural gas transmission from an operations research perspective. Furthermore, this paper includes a discussion of the most important and promising research areas in this field. Hence, our paper can serve as a useful tool to gain insight into the evolution of the many real-life applications and most recent advances in solution methodologies arising from this exciting and challenging research area of decision-making problems.




Simulation and Optimization of Natual Gas Transportation in Pipeline Networks Using a Linearized Model


Book Description

When pipelines are used to transport gas through long distances, compression stations are coupled to the system in order to regain energy that is lost during fluid flow. In order for the compression stations to work, they consume part of the fluid being transported, making of it a source of fuel. An elegant optimization problem arises from the determination of network characteristics that will minimize fuel consumption at the compression stations. This minimization problem is given by highly non-linear objective function and constraints. Furthermore, an important part of the determination of compression performance is based on the calculation of efficiency in compressors. While some authors have assumed this efficiency to be constant, others have expanded the efficiency calculations by using polynomial curves. This study introduces three methods that allow for the simulation and optimization of natural gas transportation networks: first, it is demonstrated how fuel consumption can be accounted for in a system; second, it is introduced a method for the calculation of compressor efficiency; third, a domain-constrained search procedure is implemented in order to determine how compression stations should be adjusted in order to achieve minimum fuel consumption in a given transportation network. In order to account for possible convergence difficulties, all the procedures implemented in the three methods rely on the use of the Linear-Pressure Analog model, a technique that allows for the linearization of the gas flow equations. This is concluded to be one of the main reasons why system efficiency and minimum fuel consumption can be estimated, given the fact that the Linear Analog procedure facilitates convergence and effectiveness of the methods implemented in a reliable and effective manner.




Gas Network Optimization by MINLP


Book Description

This thesis is about mathematical optimization for an efficient operation of gas transmission networks. The challenging question is how to expand and operate the network in order to facilitate the transportation of specified gas quantities at minimum cost. This problem is a major challenge for gas network operators. It is extremely hard to solve due to the combinatorial complexity of the active network elements such as compressors, the nonlinear physical characteristic of pipelines, and the immense sizes of the problem instances. Mathematical models and optimization techniques can result in huge gains for the network operators in terms of cost reductions and automated computations. We tackle this challenge by developing novel mathematical theory and associated innovative optimization algorithms for large scale instances. This allows us to produce solutions for a real-world instance, i.e., the largest gas network in Germany.




Optimization for Design and Operation of Natural Gas Transmission Networks


Book Description

This study addresses the problem of designing a new natural gas transmission network or expanding an existing network while minimizing the total investment and operating costs. A substantial reduction in costs can be obtained by effectively designing and operating the network. A well-designed network helps natural gas companies minimize the costs while increasing the customer service level. The aim of the study is to determine the optimum installation scheduling and locations of new pipelines and compressor stations. On an existing network, the model also optimizes the total flow through pipelines that satisfy demand to determine the best purchase amount of gas. A mixed integer nonlinear programming model for steady-state natural gas transmission problem on tree-structured network is introduced. The problem is a multi-period model, so changes in the network over a planning horizon can be observed and decisions can be made accordingly in advance. The problem is modeled and solved with easily accessible modeling and solving tools in order to help decision makers to make appropriate decisions in a short time. Various test instances are generated, including problems with different sizes, period lengths and cost parameters, to evaluate the performance and reliability of the model. Test results revealed that the proposed model helps to determine the optimum number of periods in a planning horizon and the crucial cost parameters that affect the network structure the most. The electronic version of this dissertation is accessible from http://hdl.handle.net/1969.1/148055







FUNDAMENTALS OF COMPRESSIBLE FLUID DYNAMICS


Book Description

Compressible Fluid Dynamics (or Gas Dynamics) has a wide range of applications in Mechanical, Aeronautical and Chemical Engineering.It plays a significant role in the design and development of compressors, turbines, missiles, rockets and aircrafts. This comprehensive and systematically organized book gives a clear analysis of the fundamental principles of Compressible Fluid Dynamics. It discusses in rich detail such topics as isentropic, Fanno, Rayleigh, simple and generalised one-dimensional flows. Besides, it covers topics such as conservation laws for compressible flow, normal and oblique shock waves, and measurement in compressible flow. Finally, the book concludes with detailed discussions on propulsive devices. The text is amply illustrated with worked-out examples, tables and diagrams to enable the students to comprehend the subject with ease. Intended as a text for undergraduate students of Mechanical, Aeronautical and Chemical Engineering, the book would also be extremely useful for practising engineers.