Multiple Uses of Water in Irrigated Areas


Book Description

Water is being transferred out of agriculture to meet the growing demand in other areas, often without an agreement of or compensation to farmers with irrigated land and water rights. Furthermore, there is a failure to recognize that irrigation systems supply water not only for the main fields, but also for domestic uses, home gardens, trees and other permanent vegetation, and livestock. Other productive uses include fishing, harvesting of aquatic plants and animals, and a variety of other enterprises such as brick making. In addition, irrigation systems can have a positive or negative effect on wildlife habitats. Thus, the withdrawal of water affects the rural household, rural economy, and the environment in a number of ways. This paper argues that to ensure efficient, equitable, and sustainable water use, to reduce poverty and improve the well-being of the community, irrigation and water resources policies need to take into account all uses and users of water within the irrigation system. The multiple uses of water in the Kirindi Oya irrigation system are examined in this paper. An interdisciplinary group of scientists have investigated a number of areas including water accounting, water quality, household water use, the valuing of water for alternative uses, and the complementarities, competition, and conflicts among uses and users.







Water Conservation, Reuse, and Recycling


Book Description

In December 2002, a group of specialists on water resources from the United States and Iran met in Tunis, Tunisia, for an interacademy workshop on water resources management, conservation, and recycling. This was the fourth interacademy workshop on a variety of topics held in 2002, the first year of such workshops. Tunis was selected as the location for the workshop because the Tunisian experience in addressing water conservation issues was of interest to the participants from both the United States and Iran. This report includes the agenda for the workshop, all of the papers that were presented, and the list of site visits.




Water Requirements for Irrigation and the Environment


Book Description

Irrigated agriculture produces about 40% of all food and fibre on about 16% of all cropped land. As such, irrigated agriculture is a productive user of resources; both in terms of yield per cropped area and in yield per volume of water consumed. Many irrigation projects, however, use (divert or withdraw) much more water than consumed by the crop. The non-consumed fraction of the water may cause a variety of undesirable effects ranging from water-logging and salinity within the irrigated area to downstram water pollution. This book discusses all components of the water balance of an irrigated area; evapotranspiration (Ch.2), effective precipitation (Ch.3) and capillary rise from the groundwater table (Ch.4). Chapter 5 then combines all components into a water management strategy that balances actual evapotranspiration (and thus crop yield) with the groundwater balance of the irrigated area (for a substainable environment). Chapter 6 presents CRIWAR 3.0, a simulation program that combines all water balance components into a single simulation procedure. The chapter describes the use of the CRIWAR software for developing water requirement tables and other useful information based on the selected water management strategy. This version greatly expands upon the capabilities of previously published programs.




Water for the Future


Book Description

This book is the result of a joint research effort led by the U.S. National Academy of Sciences and involving the Royal Scientific Society of Jordan, the Israel Academy of Sciences and Humanities, and the Palestine Health Council. It discusses opportunities for enhancement of water supplies and avoidance of overexploitation of water resources in the Middle East. Based on the concept that ecosystem goods and services are essential to maintaining water quality and quantity, the book emphasizes conservation, improved use of current technologies, and water management approaches that are compatible with environmental quality.




Lockhart and Wiseman's Crop Husbandry Including Grassland


Book Description

First published in 1966, Lockhart and Wiseman's Crop Husbandry Including Grassland has established itself as the standard crop husbandry text for students and practitioners alike. Radically revised and expanded, and with a new team of authors, the eighth edition confirms and extends its reputation.Part one looks at the basic conditions for crop growth with chapters on plant structure and growth, soil analysis and management, and the use of fertilisers and manures. There is also a new chapter on the influence of climate and weather. Part two surveys general aspects of crop husbandry. As well as a discussion of cropping techniques, there are new chapters on the important new areas of integrated crop management and organic crop husbandry, as well as discussion of seed selection and production. Part three then looks at how these general techniques are applied to particular crops, with chapters on cereals, root crops, fresh harvested crops, forage crops and combinable break crops. Part four considers the use of grassland with chapters on classification, sowing and management, grazing and conservation for winter feed.Lockhart and Wiseman's Crop Husbandry Including Grassland remains the standard text for general agriculture, land management and agri-business courses, and is a valuable practical reference for the farming industry. - The eighth edition has been widely expanded and remains the standard text for general agriculture, land management and agri-business courses - Includes new chapters on cropping techniques, integrated crop management and quality assurance, seed production and selection and the influence of climate - Discusses basic conditions for crop growth, how techniques are applied to particular crops, the influence of weather and the use of grassland




Science Breakthroughs to Advance Food and Agricultural Research by 2030


Book Description

For nearly a century, scientific advances have fueled progress in U.S. agriculture to enable American producers to deliver safe and abundant food domestically and provide a trade surplus in bulk and high-value agricultural commodities and foods. Today, the U.S. food and agricultural enterprise faces formidable challenges that will test its long-term sustainability, competitiveness, and resilience. On its current path, future productivity in the U.S. agricultural system is likely to come with trade-offs. The success of agriculture is tied to natural systems, and these systems are showing signs of stress, even more so with the change in climate. More than a third of the food produced is unconsumed, an unacceptable loss of food and nutrients at a time of heightened global food demand. Increased food animal production to meet greater demand will generate more greenhouse gas emissions and excess animal waste. The U.S. food supply is generally secure, but is not immune to the costly and deadly shocks of continuing outbreaks of food-borne illness or to the constant threat of pests and pathogens to crops, livestock, and poultry. U.S. farmers and producers are at the front lines and will need more tools to manage the pressures they face. Science Breakthroughs to Advance Food and Agricultural Research by 2030 identifies innovative, emerging scientific advances for making the U.S. food and agricultural system more efficient, resilient, and sustainable. This report explores the availability of relatively new scientific developments across all disciplines that could accelerate progress toward these goals. It identifies the most promising scientific breakthroughs that could have the greatest positive impact on food and agriculture, and that are possible to achieve in the next decade (by 2030).




Planning and Evaluation of Irrigation Projects


Book Description

Planning and Evaluation of Irrigation Projects: Methods and Implementation presents the considerations, options and factors necessary for effective implementation of irrigation strategies, going further to provide methods for evaluating the efficiency of systems-in-place for remedial correction as needed. As the first book to take this lifecycle approach to agricultural irrigation, it includes real-world examples not only on natural resource availability concerns, but also on financial impacts and measurements. With 21 chapters divided into two sections, this book is a valuable resource for agricultural and hydrology engineers, conservation scientists and anyone seeking to implement and maintain irrigation systems. - Uses real-world examples to present practical insights - Incorporates both planning and evaluation for full-scope understanding and application - Illustrates both potential benefits and limitations of irrigation solutions - Provides potential means to increase crop productivity that can result in improved farm income




Wastewater Use in Irrigated Agriculture


Book Description

The use of urban wastewater in agriculture is receiving renewed attention, with the increasing scarcity of fresh water resources in many arid and semi-arid regions of the world. Wastewater is a low-cost alternative to conventional irrigation water, although it may carry health and environmental risks. This book critically reviews experience worldwide of these issues. Emphasis is placed on untreated wastewater use by means of field-based case studies from Asia, Africa, the Middle East and Latin America. It brings together a range of perspectives including economic, health, agronomic, environmental, institutional, and policy dimensions.




Management Strategies for Water Use Efficiency and Micro Irrigated Crops


Book Description

Management Strategies for Water Use Efficiency and Micro Irrigated Crops presents new research and technologies for making better use of water resources for agricultural purposes. The chapters focus on better management to improve allocation and irrigation water efficiency and look at performance factors as well. Chapters look at irrigation technology, environmental conditions, and scheduling of water application. One section of the book focuses on water management in the cultivation of sugarcane, a very important industrial crop used in many fields. Other sections are devoted to principles and challenging technologies, water use efficiency for drip-irrigated crops, performance of fertigated rice under micro irrigation, and evaluation of performance of drip-irrigated crops. This valuable book is a must for those struggling to find ways to address the need to maintain efficient crop production in the midst of water shortages. With chapters from hands-on experts in the field, the book will be an invaluable reference and guide to effective micro irrigation methods.